首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether
【24h】

Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether

机译:二甲醚低温氧化的实验与模型研究

获取原文
获取原文并翻译 | 示例
           

摘要

The oxidation of dimethyl ether (DME) was studied using a jet-stirred reactor over a wide range of conditions: temperatures from 500 to 1100 K; equivalence ratios of 0.25, 1, and 2; residence time of 2 s; pressure of 106.7 kPa (close to the atmospheric pressure); and an inlet fuel mole fraction of 0.02 (with high dilution in helium). Reaction products were quantified using two analysis methods: gas chromatography and continuous wave cavity ring-down spectroscopy (cw-CRDS). cw-CRDS enabled the quantification of formaldehyde, which is one of the major products from DME oxidation, as well as that of hydrogen peroxide, which is an important branching agent in low-temperature oxidation chemistry. Experimental data were compared with data computed using models from the literature with important deviations being observed for the reactivity at low-temperature. A new detailed kinetic model for the oxidation of DME was developed in this study. Kinetic parameters used in this model were taken from literature or calculated in the present work using quantum calculations. This new model enables a better prediction of the reactivity in the low-temperature region. Under the present JSR conditions, error bars on predictions were given. Simulations were also successfully compared with experimental flow reactor, jet-stirred reactor, shock tube, rapid compression machine, and flame data from literature. The kinetic analysis of the model enabled the highlighting of some specificities of the oxidation chemistry of DME: (1) the early reactivity which is observed at very low-temperature (e.g., compared to propane) is explained by the absence of inhibiting reaction of the radical directly obtained from the fuel (by H atom abstraction) with oxygen yielding an olefin + HO2 center dot; (2) the low-temperature reactivity is driven by the relative importance of the second addition to O-2 (promoting the reactivity through branching chain) and the competitive decomposition reactions with an inhibiting effect.
机译:使用射流搅拌反应器在多种条件下研究了二甲醚(DME)的氧化:温度为500至1100 K;当量比为0.25、1和2;停留时间为2 s;压力为106.7 kPa(接近大气压);入口燃料摩尔分数为0.02(在氦气中高度稀释)。使用两种分析方法对反应产物进行定量:气相色谱法和连续波腔衰荡光谱法(cw-CRDS)。 cw-CRDS能够定量检测DME氧化的主要产物之一甲醛和过氧化氢的定量,过氧化氢是低温氧化化学中的重要支化剂。将实验数据与使用文献模型计算的数据进行比较,观察到在低温下的反应性存在重要偏差。在这项研究中开发了一种新的详细的DME氧化动力学模型。该模型中使用的动力学参数取自文献,或在当前工作中使用量子计算进行了计算。这种新模型可以更好地预测低温区域的反应性。在当前的JSR条件下,给出了预测的误差棒。还成功地将模拟与实验流动反应器,射流搅拌反应器,激波管,快速压缩机以及来自文献的火焰数据进行了比较。该模型的动力学分析能够突出DME氧化化学的一些特殊性:(1)在很低的温度下(例如,与丙烷相比)观察到的早期反应性是由于不存在DME的抑制反应而引起的。直接从燃料中(通过H原子提取)与氧反应生成的自由基,产生烯烃+ HO2中心点; (2)低温反应性是由第二次添加到O-2中(通过支链促进反应性)和具有抑制作用的竞争性分解反应的相对重要性驱动的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号