...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Effect of surface roughness and softness on water capillary adhesion in apolar media
【24h】

Effect of surface roughness and softness on water capillary adhesion in apolar media

机译:表面粗糙度和柔软度对非极性介质中水毛细管粘附的影响

获取原文
获取原文并翻译 | 示例

摘要

The roughness and softness of interacting surfaces are both important parameters affecting the capillary condensation of water in apolar media, yet are poorly understood at present. We studied the water capillary adhesion between a cellulose surface and a silica colloidal probe in hexane by AFM force measurements. Nanomechanical measurements show that the Young's modulus of the cellulose layer in water is significantly less (~7 MPa) than in hexane (~7 GPa). In addition, the cellulose surface in both water and hexane is rather rough (6-10 nm) and the silica probe has a comparable roughness. The adhesion force between cellulose and silica in water-saturated hexane shows a time-dependent increase up to a waiting time of 200 s and is much (2 orders of magnitude) lower than that expected for a capillary bridge spanning the whole silica probe surface. This suggests the formation of one or more smaller bridges between asperities on both surfaces, which is confirmed by a theoretical analysis. The overall growth rate of the condensate cannot be explained from diffusion mediated capillary condensation alone; thin film flow due to the presence of a wetting layer of water at both the surfaces seems to be the dominant contribution. The logarithmic time dependence of the force can also be explained from the model of the formation of multiple capillary bridges with a distribution of activation times. Finally, the force-distance curves upon retraction show oscillations. Capillary condensation between an atomically smooth mica surface and the silica particle show less significant oscillations and the adhesion force is independent of waiting time. The oscillations in the force-distance curves between cellulose and silica may stem from multiple bridge formation between the asperities present on both surfaces. The softness of the cellulose surface can bring in additional complexities during retraction of the silica particle, also resulting in oscillations in the force-distance curves.
机译:相互作用表面的粗糙度和柔软度都是影响非极性介质中水的毛细管凝结的重要参数,但目前知之甚少。我们通过AFM力测量研究了纤维素表面和二氧化硅胶体探针在己烷中的水毛细管粘附力。纳米力学测量表明,水中纤维素层的杨氏模量(〜7 MPa)明显小于己烷中(〜7 GPa)。另外,在水和己烷中的纤维素表面都相当粗糙(6-10 nm),而二氧化硅探针的粗糙度也相当。纤维素和二氧化硅在水饱和己烷中的粘附力显示出随时间变化的增加,直至200 s的等待时间,并且比跨越整个二氧化硅探针表面的毛细管桥所预期的粘附力低很多(2个数量级)。这表明在两个表面的凹凸之间形成一个或多个较小的桥,这通过理论分析得到了证实。凝结水的总增长率不能仅由扩散介导的毛细管凝结来解释。由于在两个表面上都存在水润湿层,薄膜流似乎是主要的贡献。力的对数时间依赖性也可以从具有激活时间分布的多个毛细管桥的形成模型中进行解释。最后,收回时的力-距离曲线显示出振荡。在原子上光滑的云母表面和二氧化硅颗粒之间的毛细管凝结显示出较小的明显振荡,并且粘附力与等待时间无关。纤维素和二氧化硅之间的力-距离曲线中的振荡可能源于两个表面上存在的凹凸之间的多桥形成。纤维素表面的柔软度会在二氧化硅颗粒回缩过程中带来额外的复杂性,也导致力-距离曲线发生振荡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号