...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Probing Nuclear Dynamics in Momentum Space: A New Interpretation of (e, 2e) Electron Impact Ionization Experiments on Ethanol
【24h】

Probing Nuclear Dynamics in Momentum Space: A New Interpretation of (e, 2e) Electron Impact Ionization Experiments on Ethanol

机译:探测动量空间中的核动力学:对乙醇的(e,2e)电子碰撞电离实验的新解释

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Calculations of electron momentum distributions for equilibrium geometries, employing advanced Dyson orbital theories and statistical thermodynamics beyond the RRHO approximation, fail to quantitatively reproduce the outermost momentum distribution profile inferred from (e, 2e) electron impact ionization experiments on ethanol employing high-resolution electron momentum spectroscopy. A very detailed study of the influence on this momentum distribution of nuclear dynamics in the initial ground state and in the final ionized state is presented according to a thermal averaging over exceedingly large sets of model structures as well as Born-Oppenheimer molecular dynamical simulations on the potential energy surface of the radical cation. Our results give very convincing albeit qualitative indications that the strong turn-up of the (e, 2e) ionization intensities characterizing the highest occupied molecular orbital (HOMO) of ethanol at low electron momenta is the combined result of (1) the extraordinarily flat nature of the conformational energy map of ethanol, which enables significant departures from energy minima in the ground electronic state, (2) strong anomeric interactions between an oxygen lone pair and the central C-C bond for the minor but significant fraction of conformers exhibiting a hydroxyl torsion angle (R) at around 90°, and, last but not least, (3) the possibility to observe with this minor conformer fraction ultrafast and highly significant extensions of the central C-C bond, resulting, in turn, in an enhanced delocalization of the HOMO from the oxygen lone pair region onto the methyl group, immediately after the sudden removal of an electron. This charge transfer appears to occur at the very first stages, that is, within an effective time scale on the order of 10 fs, of an ultrafast dissociation of the ethanol radical cation into a methyl radical and a protonated form of formaldehyde.
机译:使用先进的戴森轨道理论和超过RRHO近似的统计热力学来计算平衡几何构型的电子动量分布,无法定量地重现从(e,2e)电子碰撞电离实验在乙醇中采用高分辨率电子动量得出的最外层动量分布曲线。光谱学。根据对超大型模型结构的热平均以及对玻恩-奥本海默分子动力学模拟的结果,对初始基态和最终电离态下核动力学对动量分布的影响进行了非常详细的研究。自由基阳离子的势能表面。我们的研究结果给出了非常令人信服的结论,尽管从质量上表明,在低电子动量下表征乙醇的最高占据分子轨道(HOMO)的(e,2e)电离强度的强调出现是(1)超平性质的综合结果乙醇的构象能图,可以使它在基态电子状态下显着偏离能量最小值,(2)孤对偶但具有显着比例的羟基扭曲角的构象异构体,氧孤对与中心CC键之间存在强烈的异头相互作用(R)在90°左右,最后但并非最不重要的是(3)可以观察到这种较小的构象部分,超快且高度显着的中央CC键延伸,进而导致HOMO的离域增强突然除去电子后,立即从氧孤对区转移到甲基上。这种电荷转移似乎发生在乙醇自由基阳离子超快速解离为甲基自由基和质子化形式的甲醛的最初阶段,即在10 fs左右的有效时间范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号