...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Tagging of Protonated Ala-Tyr and Tyr-Ala by Crown Ether Prevents Direct Hydrogen Loss and Proton Mobility after Photoexcitation: Importance for Gas-Phase Absorption Spectra, Dissociation Lifetimes, and Channels
【24h】

Tagging of Protonated Ala-Tyr and Tyr-Ala by Crown Ether Prevents Direct Hydrogen Loss and Proton Mobility after Photoexcitation: Importance for Gas-Phase Absorption Spectra, Dissociation Lifetimes, and Channels

机译:冠醚标记质子化的Ala-Tyr和Tyr-Ala可防止光激发后直接氢损失和质子迁移:气相吸收光谱,离解寿命和通道的重要性

获取原文
获取原文并翻译 | 示例

摘要

Photodissociation of protonated Tyr, Ala-Tyr, Tyr-Ala (Ala = alanine, Tyr = tyrosine), and their complexes with 18-crown-6-ether (CE) was performed in an electrostatic ion storage ring using a tunable laser system. While the three bare ions all absorb strongly at 222 nm, absorption at higher wavelengths was barely visible from sampling the neutrals formed in delayed dissociation. A band at 270 nm was introduced, however, as a consequence of CE attachment to the bare ions. To understand the difference between bare ions and complexes, electronically excited states are considered: The initially reached ππ~* state on phenol couples with the dissociative πσ~* state on ammonium, which leads to direct hydrogen loss. Cold radical cations are formed that at high wavelengths do not have enough energy for further dissociation. Excitation within the 222-nm band on the other hand leads to delayed dissociation of stored radical cations that is monitored in the present setup. The πσ~* state moves out of the spectral region upon CE attachment, and instead statistical dissociation is sampled on the microsecond to millisecond time scale at all wavelengths. Our data demonstrate the strength of using supramolecular complexes for action spectroscopy experiments to prevent erroneous spectra as a result of undesired dissociation (H loss) from electronically excited states. The gas-phase absorption spectra firmly establish the perturbations of the phenol electronic structure by a water solvent: The 270-nm band red shifts by__5nm, whereas the 222-nm band changes by__3nm. Both transitions occur in the phenol group. These results may be useful for protein dynamics experiments that rely on electronic excitations. Product ion mass spectra of [Tyr + H]~+, [Ala-Tyr + H]~+, [Tyr-Ala + H]~+, [Ala-Tyr + H]~+(CE), and [Tyr-Ala + H]~+(CE) significantly depend on the excitation wavelength from 210 to 310 nm and on whether the ionizing proton is mobile or not.
机译:质子化的Tyr,Ala-Tyr,Tyr-Ala(Ala =丙氨酸,Tyr =酪氨酸)及其与18冠-6醚(CE)的配合物的光解离是在可调谐激光系统的静电离子存储环中进行的。尽管三个裸离子都在222 nm处强烈吸收,但从采样中发现在延迟解离中形成的中性几乎看不到更高波长的吸收。但是,由于CE附着在裸离子上,因此引入了270 nm的能带。要了解裸离子和络合物之间的区别,可以考虑电子激发态:苯酚对上最初达到的ππ〜*状态与铵上的离解性πσ〜*状态导致直接氢损失。形成冷自由基阳离子,其在高波长下没有足够的能量用于进一步解离。另一方面,在222 nm波段内激发会导致存储的自由基阳离子解离延迟,在本设置中将对其进行监控。 CE附着后,πσ〜*状态移出光谱区域,取而代之的是在所有波长的微秒至毫秒时间尺度上对统计分解进行采样。我们的数据证明了使用超分子配合物进行动作光谱实验的优势,可以防止由于电子激发态引起的不希望的离解(H损失)而导致错误的光谱。气相吸收光谱牢固地确定了水溶剂对苯酚电子结构的扰动:270 nm谱带的红移为__5nm,而222 nm谱带的红移为__3nm。两个过渡都发生在酚基团中。这些结果对于依赖电子激发的蛋白质动力学实验可能有用。 [Tyr + H]〜+,[Ala-Tyr + H]〜+,[Tyr-Ala + H]〜+,[Ala-Tyr + H]〜+(CE)和[Tyr- Ala + H]〜+(CE)很大程度上取决于210至310 nm的激发波长以及电离质子是否可移动。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号