首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Approximation of slow attracting manifolds in chemical kinetics by trajectory-based optimization approaches
【24h】

Approximation of slow attracting manifolds in chemical kinetics by trajectory-based optimization approaches

机译:通过基于轨迹的优化方法逼近化学动力学中缓慢吸引流形

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Many common kinetic model reduction approaches are explicitly based on inherent multiple time scales and often assume and directly exploit a clear time scale separation into fast and slow reaction processes. They approximate the system dynamics with a dimension-reduced model after eliminating the fast modes by enslaving them to the slow ones. The corresponding restrictive assumption of full relaxation of fast modes often renders the resulting approximation of slow attracting manifolds inaccurate as a representation of the reduced model and makes the numerical solution of the nonlinear "reduction equations" particularly difficult in many cases where the gap in intrinsic time scales is not large enough. We demonstrate that trajectory optimization approaches can avoid such severe restrictions by computing numerical solutions that correspond to "maximally relaxed" dynamical modes in a suitable sense. We present a framework of trajectory-based optimization for model reduction in chemical kinetics and a general class of reduction criteria characterizing the relaxation of chemical forces along reaction trajectories. These criteria can be motivated geometrically exploiting ideas from differential geometry and fundamental physics and turn out to be highly successful in example applications. Within this framework, we provide results for the computational approximation of slow attracting low-dimensional manifolds in terms of families of optimal trajectories for a six-component hydrogen combustion mechanism.
机译:许多常见的动力学模型简化方法都明确地基于固有的多个时间尺度,并且通常假设并直接利用清晰的时间尺度将其分为快速和慢速反应过程。在通过将快速模式奴役为慢速模式消除快速模式后,他们使用降维模型来近似系统动力学。快速模式完全松弛的相应限制性假设通常会使慢速吸引歧管的近似结果不准确,不能表示为简化模型,并且在许多情况下,固有时间的差距使得非线性“约化方程”的数值求解特别困难。秤不够大。我们证明了轨迹优化方法可以通过在适当的意义上计算与“最大松弛”动态模式相对应的数值解来避免这种严重的限制。我们提出了一种基于轨迹优化的框架,用于化学动力学模型的减少和表征化学力沿反应轨迹的松弛的一般减少准则。这些标准可以从微分几何和基础物理学的角度出发,以几何学的方式来激发,并在示例应用程序中获得高度成功。在此框架内,我们为六组分氢燃烧机理的最佳轨迹族提供了慢速吸引低维流形的计算近似结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号