...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Gas phase hydration and deprotonation of the cyclic C3H3(+) cation. Solvation by acetonitrile, and comparison with the benzene radical cation
【24h】

Gas phase hydration and deprotonation of the cyclic C3H3(+) cation. Solvation by acetonitrile, and comparison with the benzene radical cation

机译:环状C3H3(+)阳离子的气相水合和去质子化。乙腈溶剂化,并与苯自由基阳离子比较

获取原文
获取原文并翻译 | 示例

摘要

The binding energies of the first 5 H2O molecules to c-C3H3+ were determined by equilibrium measurements. The measured binding energies of the hydrated clusters of 9-12 kcal/mol are typical of carbon- based CH+center dot center dot center dot X hydrogen bonds. The ion solvation with the more polar CH3CN molecules results in stronger bonds consistent with the increased ion-dipole interaction. Ab initio calculations show that the lowest energy isomer of the c-C3H3+(H2O)(4) cluster consists of a cyclic water tetramer interacting with the c-C3H3+ ion, which suggests the presence of orientational restraint of the water molecules consistent with the observed large entropy loss. The c-C3H3+ ion is deprotonated by 3 or more H2O molecules, driven energetically by the association of the solvent molecules to form strongly hydrogen bonded (H2O)(n)H+ clusters. The kinetics of the associative proton transfer (APT) reaction C3H3+ + nH(2)O -> (H2O)(n)H+ + C3H2 center dot exhibits an unusually steep negative temperature coefficient of k = cT(-63 +/- 4) (or activation energy of -37 +/- 1 kcal mol(-1)). The behavior of the C3H3+/water system is exactly analogous to the benzene(+center dot)/water system, suggesting that the mechanism, kinetics and large negative temperature coefficients may be general to multibody APT reactions. These reactions can become fast at low temperatures, allowing ionized polycyclic aromatics to initiate ice formation in cold astrochemical environments.
机译:通过平衡测量来确定前5个H2O分子与c-C3H3 +的结合能。测得的9-12 kcal / mol水合簇的结合能是碳基CH +中心点中心点中心点中心点X氢键的典型特征。极性更大的CH3CN分子与离子的溶剂化作用会导致键更强,这与离子-偶极子相互作用的增加相一致。从头算计算表明,c-C3H3 +(H2O)(4)团簇的最低能级异构体由与c-C3H3 +离子相互作用的环状水四聚体组成,这表明水分子的方向性约束与观察到的一致熵损失大。 c-C3H3 +离子被3个或更多H2O分子去质子化,并通过溶剂分子的缔合而受到能量驱动,从而形成强氢键(H2O)(n)H +簇。缔合质子转移(APT)反应C3H3 + + nH(2)O->(H2O)(n)H + + C3H2中心点的动力学表现出异常陡峭的负温度系数k = cT(-63 +/- 4) (或-37 +/- 1 kcal mol(-1)的活化能)。 C3H3 + /水系统的行为与苯(+中心点)/水系统完全相似,这表明其机理,动力学和较大的负温度系数可能是多体APT反应的一般现象。这些反应在低温下会很快,使离子化的多环芳烃在寒冷的星化环境中引发结冰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号