首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Vibrational Dynamics of Terminal Acetylenes: III. Comparison of the Acetylenic C-H Stretch Intramolecular Vibrational-Energy Redistribution Rates in Ultracold Molecular Beams, Room-Temperature Gases, and Room-Temperature Dilute Solutions
【24h】

Vibrational Dynamics of Terminal Acetylenes: III. Comparison of the Acetylenic C-H Stretch Intramolecular Vibrational-Energy Redistribution Rates in Ultracold Molecular Beams, Room-Temperature Gases, and Room-Temperature Dilute Solutions

机译:末端乙炔的振动动力学:III。超冷分子束,室温气体和室温稀溶液中乙炔C-H拉伸分子内振动能量重新分布速率的比较

获取原文
获取原文并翻译 | 示例
           

摘要

The population relaxation rate of the first excited state of the acetylenic C-H stretch is compared for a series of isolated and solvated terminal acetylenes. The isolated molecule relaxation rate for ultracold molecules is measured using high-resolution infrared spectroscopy in a molecular beam. These measurements use a microwave-infrared double-resonance technique to obtain rotationally resolved spectra that originate in the vibrational ground state. The relaxation rates in room-temperature gas and dilute CCl_4 solution (0.05 M) are measured using two-color transient absorption picosecond spectroscopy. Although the molecule-dependent contribution to the total relaxation rate in solution is proportional to the population relaxation rate measured for the isolated molecule under molecular-beam conditions, a large scale factor (27) is required to reach quantitative agreement. Part of the reason a large IVR scaling rate is observed can be attributed to the fact that the intramolecular vibrational-energy redistribution (IVR) dynamics of the terminal acetylenes occur on two distinct time scales. The faster time scale produces only partial redistribution of the excited-state population. The experimental limitations of high-resolution infrared spectroscopy make it likely that this time scale is undetected in the molecular-beam measurements. Instead, the slower time scale, which is about 5 times slower than the initial IVR rate, is more closely related to the IVR time scale measured using high-resolution molecular-beam infrared spectroscopy. In addition, a thermal factor is expected when comparisons are made between ultracold molecular-beam and room-temperature sample conditions. A comparison of the measured IVR rates under these two conditions suggests that the rate enhancement at room temperature is related to the average thermal energy of the molecule. Most of the molecules in this study have about the same thermal energy, and this energy provides a factor of 5 increase in the IVR rate over the value obtained under ultracold conditions. These two factors together explain the large increase in the isolated molecule rate when the molecular-beam IVR rate is compared to the solution-phase relaxation rate of the room-temperature sample.
机译:对于一系列分离的和溶剂化的末端乙炔,比较了炔属C-H链的第一个激发态的种群弛豫速率。使用分子束中的高分辨率红外光谱法测量超冷分子的分离分子弛豫率。这些测量使用微波红外双共振技术来获得源自振动基态的旋转分辨光谱。使用双色瞬态吸收皮秒光谱法测量室温气体和稀CCl_4溶液(0.05 M)中的弛豫率。尽管分子对溶液中总弛豫速率的依赖性与在分子束条件下测得的分离分子的种群弛豫速率成正比,但仍需要大比例因子(27)才能达到定量一致性。观察到较大的IVR缩放比例的部分原因可以归因于以下事实:末端乙炔的分子内振动能重新分布(IVR)动态发生在两个不同的时间尺度上。更快的时间标度仅产生激发态总体的部分重新分布。高分辨率红外光谱法的实验局限性使其有可能在分子束测量中未检测到该时间标度。相反,较慢的时间刻度(比初始IVR速率慢大约5倍)与使用高分辨率分子束红外光谱仪测量的IVR时间刻度更紧密相关。另外,在对超冷分子束和室温样品条件进行比较时,预计会有一个热因子。在这两种条件下测得的IVR速率的比较表明,室温下的速率增加与分子的平均热能有关。这项研究中的大多数分子具有大约相同的热能,并且该能量使IVR速率比在超冷条件下获得的值增加了5倍。当分子束IVR速率与室温样品的溶液相弛豫速率相比时,这两个因素共同说明了分离的分子速率的大幅增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号