...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Tonic nanomolar dopamine enables an activity-dependent phase recovery mechanism that persistently alters the maximal conductance of the hyperpolarization-activated current in a rhythmically active neuron.
【24h】

Tonic nanomolar dopamine enables an activity-dependent phase recovery mechanism that persistently alters the maximal conductance of the hyperpolarization-activated current in a rhythmically active neuron.

机译:补品纳摩尔多巴胺可实现一种与活动有关的相恢复机制,该机制可持久改变有节奏活动神经元中超极化激活电流的最大电导。

获取原文
获取原文并翻译 | 示例
           

摘要

The phases at which network neurons fire in rhythmic motor outputs are critically important for the proper generation of motor behaviors. The pyloric network in the crustacean stomatogastric ganglion generates a rhythmic motor output wherein neuronal phase relationships are remarkably invariant across individuals and throughout lifetimes. The mechanisms for maintaining these robust phase relationships over the long-term are not well described. Here we show that tonic nanomolar dopamine (DA) acts at type 1 DA receptors (D1Rs) to enable an activity-dependent mechanism that can contribute to phase maintenance in the lateral pyloric (LP) neuron. The LP displays continuous rhythmic bursting. The activity-dependent mechanism was triggered by a prolonged decrease in LP burst duration, and it generated a persistent increase in the maximal conductance (G(max)) of the LP hyperpolarization-activated current (I(h)), but only in the presence of steady-state DA. Interestingly, micromolar DA produces an LP phase advance accompanied by a decrease in LP burst duration that abolishes normal LP network function. During a 1 h application of micromolar DA, LP phase recovered over tens of minutes because, the activity-dependent mechanism enabled by steady-state DA was triggered by the micromolar DA-induced decrease in LP burst duration. Presumably, this mechanism restored normal LP network function. These data suggest steady-state DA may enable homeostatic mechanisms that maintain motor network output during protracted neuromodulation. This DA-enabled, activity-dependent mechanism to preserve phase may be broadly relevant, as diminished dopaminergic tone has recently been shown to reduce I(h) in rhythmically active neurons in the mammalian brain.
机译:有节奏的运动输出中网络神经元激发的阶段对于正确产生运动行为至关重要。甲壳动物气胃神经节中的幽门网络产生节律性运动输出,其中神经元相位关系在个体和整个生命周期中均显着不变。长期维持这些鲁棒的相位关系的机制没有得到很好的描述。在这里,我们显示补品纳摩尔多巴胺(DA)作用于1型DA受体(D1Rs),以启用一种依赖于活性的机制,该机制可有助于外侧幽门(LP)神经元的相维持。 LP会显示连续的节奏爆裂。依赖于活动的机制是由LP突发持续时间的延长而触发的,它使LP超极化激活电流(I(h))的最大电导(G(max))持续增加,但仅在稳态DA的存在。有趣的是,微摩尔DA会产生LP相提前,并伴随着L​​P突发持续时间的减少,从而消除了正常LP网络功能。在施用微摩尔DA 1小时期间,LP相在数十分钟内恢复,因为由微摩尔DA诱导的LP爆发持续时间的减少触发了稳态DA激活的依赖于活性的机制。据推测,该机制恢复了正常的LP网络功能。这些数据表明,稳态DA可能启用体内稳态机制,从而在长期的神经调节过程中维持运动网络的输出。这种DA使能的,依赖于活动的,能保持相位的机制可能与广泛相关,因为最近已证明多巴胺能减弱可以降低哺乳动物大脑中有节奏的神经元中的I(h)。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号