首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection.
【24h】

Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection.

机译:调节双耳时间差以实现双耳重合检测的机制。

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding binaural perception requires detailed analyses of the neural circuitry responsible for the computation of interaural time differences (ITDs). In the avian brainstem, this circuit consists of internal axonal delay lines innervating an array of coincidence detector neurons that encode external ITDs. Nucleus magnocellularis (NM) neurons project to the dorsal dendritic field of the ipsilateral nucleus laminaris (NL) and to the ventral field of the contralateral NL. Contralateral-projecting axons form a delay line system along a band of NL neurons. Binaural acoustic signals in the form of phase-locked action potentials from NM cells arrive at NL and establish a topographic map of sound source location along the azimuth. These pathways are assumed to represent a circuit similar to the Jeffress model of sound localization, establishing a place code along an isofrequency contour of NL. Three-dimensional measurements of axon lengths reveal major discrepancies with the current model; the temporal offset based on conduction length alone makes encoding of physiological ITDs impossible. However, axon diameter and distances between Nodes of Ranvier also influence signal propagation times along an axon. Our measurements of these parameters reveal that diameter and internode distance can compensate for the temporal offset inferred from axon lengths alone. Together with other recent studies, these unexpected results should inspire new thinking on the cellular biology, evolution, and plasticity of the circuitry underlying low-frequency sound localization in both birds and mammals.
机译:了解双耳知觉需要对负责计算耳间时间差(ITD)的神经回路进行详细分析。在禽脑干中,该电路由内部轴突延迟线组成,该轴突线支配编码外部ITD的同时发生检测器神经元阵列。巨细胞核(NM)神经元投射到同侧椎板(NL)的背侧树突区域和对侧NL的腹侧区域。对侧投射的轴突沿着NL神经元带形成延迟线系统。来自NM单元的锁相动作电位形式的双耳声信号到达NL,并建立沿方位角的声源位置的地形图。假定这些路径代表类似于Jeffress声音定位模型的电路,沿着NL的等频线建立位置代码。轴突长度的三维测量揭示了当前模型的主要差异;仅基于传导长度的时间偏移使得不可能对生理ITD进行编码。但是,轴突直径和Ranvier节点之间的距离也会影响沿轴突的信号传播时间。我们对这些参数的测量结果表明,直径和节间距离可以补偿仅根据轴突长度推断出的时间偏移。与其他最近的研究一起,这些出乎意料的结果将激发关于鸟类和哺乳动物低频声音定位基础的电路生物学,进化和可塑性的新思维。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号