首页> 外文期刊>The Journal of Chemical Physics >Perspective: On the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules
【24h】

Perspective: On the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules

机译:观点:流体动力学相互作用在大分子亚细胞动力学中的重要性

获取原文
获取原文并翻译 | 示例
           

摘要

An outstanding challenge in computational biophysics is the simulation of a living cell at molecular detail. Over the past several years, using Stokesian dynamics, progress has been made in simulating coarse grained molecular models of the cytoplasm. Since macromolecules comprise 20%-40% of the volume of a cell, one would expect that steric interactions dominate macromolecular diffusion. However, the reduction in cellular diffusion rates relative to infinite dilution is due, roughly equally, to steric and hydrodynamic interactions, HI, with nonspecific attractive interactions likely playing rather a minor role. HI not only serve to slow down long time diffusion rates but also cause a considerable reduction in the magnitude of the short time diffusion coefficient relative to that at infinite dilution. More importantly, the long range contribution of the Rotne-Prager-Yamakawa diffusion tensor results in temporal and spatial correlations that persist up to microseconds and for intermolecular distances on the order of protein radii. While HI slow down the bimolecular association rate in the early stages of lipid bilayer formation, they accelerate the rate of large scale assembly of lipid aggregates. This is suggestive of an important role for HI in the self-assembly kinetics of large macromolecular complexes such as tubulin. Since HI are important, questions as to whether continuum models of HI are adequate as well as improved simulation methodologies that will make simulations of more complex cellular processes practical need to be addressed. Nevertheless, the stage is set for the molecular simulations of ever more complex subcellular processes. Published by AIP Publishing.
机译:在计算生物物理学中的一个巨大挑战是在分子细节上模拟活细胞。在过去的几年中,利用斯托克斯动力学,在模拟细胞质的粗粒分子模型方面取得了进展。由于大分子占细胞体积的20%-40%,因此人们期望空间相互作用主导大分子扩散。然而,相对于无限稀释,细胞扩散速率的降低大致是由于空间和流体动力学相互作用HI引起的,非特异性吸引相互作用可能起着较小的作用。 HI不仅减慢了长时间的扩散速度,而且还导致了相对于无限稀释时的短期扩散系数的大小的显着降低。更重要的是,Rotne-Prager-Yamakawa扩散张量的远距离贡献导致时间和空间相关性持续到微秒,并且分子间距离持续到蛋白质半径的数量级。虽然HI在脂质双层形成的早期阶段减慢了双分子缔合速率,但它们加快了脂质聚集体大规模组装的速率。这暗示了HI在大分子复合物例如微管蛋白的自组装动力学中的重要作用。由于HI很重要,因此需要解决有关HI的连续模型是否足够以及改进的仿真方法的问题,这些方法将使对更复杂的细胞过程的仿真成为现实。然而,为更复杂的亚细胞过程的分子模拟奠定了基础。由AIP Publishing发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号