首页> 外文期刊>The Journal of Chemical Physics >Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures
【24h】

Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

机译:重新定义在有限温度下的电子化学势,化学硬度和柔软度的定义

获取原文
获取原文并翻译 | 示例
           

摘要

We extend the definition of the electronic chemical potential (mu(e)) and chemical hardness (eta(e)) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, mu(e). Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (-I), positive (-A), and zero values of the fractional charge (-(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness. (C) 2015 AIP Publishing LLC.
机译:通过将反应性化学物种视为电子交换的真正开放系统,我们将电子化学势(mu(e))和化学硬度(eta(e))的定义扩展到有限温度,并且仅在以下条件下工作:大规范合奏。与这些描述符的零温度推导一样,化学试剂对电子传输的响应取决于系统(平均)电子能量的响应,而不是由电子的化学势(例如电子-通常与电子化学势mu(e)不同的储库。尽管在低电子温度下(最高约5000 K),电子能量对电子数的依赖性在质量上类似于分段连续的直线分布图,但将温度作为自由变量引入会使该分布图变得平滑,因此导数(存在相对于平均电子数的平均电子能量的所有阶数中的一个,并且可以进行分析评估。假设为三态合奏,则可以恢复负电荷(-I),正电荷(-A)和零电荷的零值(-(I + A)/ 2)的众所周知的结果。类似地,在零温度极限下,化学硬度被正式表示为颗粒数的狄拉克δ函数,并满足与整体柔软度众所周知的互易关系。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号