...
首页> 外文期刊>The Journal of Chemical Physics >Oscillating electric-field effects on adsorbed-water at rutile- and anatase-TiO2 surfaces
【24h】

Oscillating electric-field effects on adsorbed-water at rutile- and anatase-TiO2 surfaces

机译:金红石型和锐钛矿型TiO2表面上振荡水对吸附水的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We have performed non-equilibrium molecular dynamics simulations of various TiO2/water interfaces at ambient temperature in presence of oscillating electric fields in frequency range 20-100 GHz and RMS intensities 0.05-0.25 V/angstrom. Although the externally applied fields are by one order of magnitude lower than the intrinsic electric field present on the interfaces (similar to 1.5-4.5 V/angstrom), significant non-thermal coupling of rotational and translational motion of water molecules was clearly observed. Enhancement of the motion, manifested by increase of diffusivity, was detected in the first hydration layer, which is known to be heavily confined by adsorption to the TiO2 surface. Interestingly, the diffusivity increases more rapidly on anatase than on rutile facets where the adsorbed water was found to be more organized and restrained. We observed that the applied oscillating field reduces number of hydrogen bonds on the interface. The remaining H-bonds are weaker than those detected under zero-field conditions; however, their lifetime increases on most of the surfaces when the low-frequency fields are applied. Reduction of adsorption interaction was observed also in IR spectra of interfacial water where the directional patterns are smeared as the intensities of applied fields increase. Published by AIP Publishing.
机译:我们已经在环境温度下,在20-100 GHz频率范围和RMS强度0.05-0.25 V /埃的振荡电场存在下,对各种TiO2 /水界面进行了非平衡分子动力学模拟。尽管外部施加的电场比界面上存在的固有电场低一个数量级(类似于1.5-4.5 V /埃),但可以清楚地观察到水分子旋转和平移运动的显着非热耦合。在第一水合层中检测到运动的增强,表现为扩散率的增加,已知该水合层通过吸附到TiO2表面而受到严重限制。有趣的是,锐钛矿的扩散率比金红石面的扩散快得多,在金红石面上,吸附的水更有条理和被抑制。我们观察到,施加的振荡场减少了界面上的氢键数量。其余的H键比零场条件下检测到的弱。然而,当施加低频场时,它们的寿命在大多数表面上都会增加。在界面水的红外光谱中也观察到吸附相互作用的降低,其中随着施加电场强度的增加,方向图被涂抹。由AIP Publishing发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号