首页> 外文期刊>The Journal of Chemical Physics >Vibronic coupling in molecular crystals: A Franck-Condon Herzberg-Teller model of H-aggregate fluorescence based on quantum chemical cluster calculations
【24h】

Vibronic coupling in molecular crystals: A Franck-Condon Herzberg-Teller model of H-aggregate fluorescence based on quantum chemical cluster calculations

机译:分子晶体中的电子振动耦合:基于量子化学簇计算的H-聚集荧光的Franck-Condon Herzberg-Teller模型

获取原文
获取原文并翻译 | 示例
           

摘要

Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescence spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems. (C) 2015 AIP Publishing LLC.
机译:在这里,我们提出了一种基于大簇的原子模拟来处理分子晶体中振动耦合的一般方法。这样的簇包括以量子化学水平处理的模型聚集体,该模型聚集体嵌入在分子力学水平处理的现实环境中。当我们计算模型聚集体的基态和激发态平衡几何以及振动模式时,我们的方法能够捕获由于耦合到分子间自由度而产生的影响,而现有模型缺乏依赖于几何和单分子正态模式的耦合。使用团簇的几何形状和振动模式,我们能够通过同时包含弗兰克-康登(FC)和聚类,来模拟最低激发态具有可忽略的振荡器强度的团聚体的荧光光谱(例如,理想的H团聚体) )和赫兹伯格-泰勒(HT)的振动转变。后一项使团簇的绝热激发态通过沿核坐标的跃迁偶极矩的导数以扰动方式与振动耦合。虽然对于单分子已经建立了使用FC和HT项的振动耦合模拟,但据我们所知,这是它们首次应用于分子聚集体。在这里,我们将这种方法应用于对二苯乙烯基苯单晶H聚集体的低温荧光光谱的模拟,并与以前广泛应用于此类系统的粗粒度Frenkel-Holstein方法进行比较。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号