首页> 外文期刊>The Journal of Chemical Physics >Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: Difference between atomistic and coarse-grained simulations
【24h】

Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: Difference between atomistic and coarse-grained simulations

机译:富含亮氨酸的跨膜α-螺旋自缔合的平均力分析潜力:原子模拟与粗粒模拟之间的差异

获取原文
获取原文并翻译 | 示例
           

摘要

Interaction of transmembrane (TM) proteins is important in many biological processes. Large-scale computational studies using coarse-grained (CG) simulations are becoming popular. However, most CG model parameters have not fully been calibrated with respect to lateral interactions of TM peptide segments. Here, we compare the potential of mean forces (PMFs) of dimerization of TM helices obtained using a MARTINI CG model and an atomistic (AT) Berger lipids-OPLS/AA model (AT~(OPLS)). For helical, tryptophan-flanked, leucine-rich peptides (WL15 and WALP15) embedded in a parallel configuration in an octane slab, the AT~(OPLS) PMF profiles showed a shallow minimum (with a depth of approximately 3 kJ/mol; i.e., a weak tendency to dimerize). A similar analysis using the CHARMM36 all-atom model (AT~(CHARMM)) showed comparable results. In contrast, the CG analysis generally showed steep PMF curves with depths of approximately 16–22 kJ/mol, suggesting a stronger tendency to dimerize compared to the AT model. This CG > AT discrepancy in the propensity for dimerization was also seen for dilauroylphosphatidylcholine (DLPC)-embedded peptides. For a WL15 (andWALP15)/DLPC bilayer system, AT~(OPLS) PMF showed a repulsive mean force for a wide range of interhelical distances, in contrast to the attractive forces observed in the octane system. The change from the octane slab to the DLPC bilayer also mitigated the dimerization propensity in the CG system. The dimerization energies of CG (AALALAA)_3 peptides in DLPC and dioleoylphosphatidylcholine bilayers were in good agreement with previous experimental data. The lipid headgroup, but not the length of the lipid tails, was a key causative factor contributing to the differences between octane and DLPC. Furthermore, the CG model, but not the AT model, showed high sensitivity to changes in amino acid residues located near the lipid-water interface and hydrophobic mismatch between the peptides and membrane. These findings may help interpret CG and AT simulation results on membrane proteins.
机译:跨膜(TM)蛋白质的相互作用在许多生物学过程中都很重要。使用粗粒度(CG)模拟的大规模计算研究正变得越来越流行。然而,关于CG肽段的横向相互作用,大多数CG模型参数尚未完全校准。在这里,我们比较了使用MARTINI CG模型和原子(AT)Berger脂质-OPLS / AA模型(AT〜(OPLS))获得的TM螺旋二聚化的平均力(PMFs)的潜力。对于以平行构型嵌入辛烷平板的螺旋,色氨酸侧翼,富含亮氨酸的肽(WL15和WALP15),AT〜(OPLS)PMF谱显示出一个浅的最小值(深度约为3 kJ / mol;即,则难以二聚)。使用CHARMM36全原子模型(AT〜(CHARMM))进行的类似分析显示了可比的结果。相反,CG分析通常显示陡峭的PMF曲线,深度约为16-22 kJ / mol,这表明与AT模型相比,二聚化趋势更强。对于二月桂酰磷脂酰胆碱(DLPC)包埋的肽,也发现二聚化倾向中的CG> AT差异。对于WL15(和WALP15)/ DLPC双层系统,AT〜(OPLS)PMF在很宽的螺距范围内显示出排斥平均力,这与在辛烷系统中观察到的吸引力相反。从辛烷平板到DLPC双层的变化也减轻了CG系统中的二聚化倾向。 DLPC和油酰磷脂酰胆碱双层中CG(AALALAA)_3肽的二聚能与以前的实验数据非常吻合。脂类头基而不是脂类尾巴的长度是导致辛烷值和DLPC之间差异的关键原因。此外,CG模型而非AT模型显示出对位于脂质-水界面附近的氨基酸残基变化以及肽与膜之间的疏水错配的高度敏感性。这些发现可能有助于解释膜蛋白的CG和AT模拟结果。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号