首页> 外文期刊>The Journal of Chemical Physics >Impacts of side chain and excess energy on the charge photogeneration dynamics of low-bandgap copolymer-fullerene blends
【24h】

Impacts of side chain and excess energy on the charge photogeneration dynamics of low-bandgap copolymer-fullerene blends

机译:侧链和过量能量对低带隙共聚物-富勒烯共混物电荷光生动力学的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Primary charge photogeneration dynamics in neat and fullerene-blended films of a pair of alternating benzo[1,2-b:4,5-b']dithiophene (BDT) and thieno[3,4-b]thiophene (TT) copolymers are comparatively studied by using near-infrared, time-resolved absorption (TA) spectroscopy under low excitation photon fluence. PBDTTT-E and PBDTTT-C, differed merely in the respective TT-substituents of ester (-E) and carbonyl (-C), show distinctly different charge photogeneration dynamics. The pair of neat PBDTTT films show exciton lifetimes of ~0.1 ns and fluorescence quantum yields below 0.2%, as well as prominent excess-energy enhanced exciton dissociation. In addition, PBDTTT-C gives rise to >50% higher P~(?+) yield than PBDTTT-E does irrespective to the excitation photon energy. Both PBDTTT-E:PC_(61)BM and PBDTTT-C:PC_(61)BM blends show subpicosecond exciton lifetimes and nearly unitary fluorescence quenching efficiency and, with respect to the former blend, the latter one shows substantially higher branching ratio of charge separated (CS) state over interfacial charge transfer (ICT) state, and hence more efficient exciton-to-CS conversion. For PBDTTTC: PC_(61)BM, the ultrafast charge dynamics clearly show the processes of ICT-CS interconversion and P~(?+) migration, which are possibly influenced by the ICT excess energy. However, such processes are relatively indistinctive in the case of PBDTTT-E:PC_(61)BM. The results strongly prove the importance of ICT dissociation in yielding free charges, and are discussed in terms of the film morphology and the precursory solution-phase macromolecular conformation.
机译:一对交替的苯并[1,2-b:4,5-b']二噻吩(BDT)和噻吩并[3,4-b]噻吩(TT)共聚物的纯净和富勒烯共混薄膜中的主电荷光生动力学是在低激发光子注量下使用近红外,时间分辨吸收(TA)光谱进行了比较研究。 PBDTTT-E和PBDTTT-C的不同之处仅在于酯(-E)和羰基(-C)的各自TT取代基不同,它们显示出明显不同的电荷光生动力学。一对纯净的PBDTTT薄膜显示出〜0.1 ns的激子寿命,荧光量子产率低于0.2%,以及显着的过能量增强的激子解离。此外,与激发光子能量无关,PBDTTT-C的P〜(α+)收率比PBDTTT-E高50%以上。 PBDTTT-E:PC_(61)BM和PBDTTT-C:PC_(61)BM共混物均表现出亚皮秒的激子寿命,并且几乎具有单一的荧光猝灭效率,相对于前一种共混物,后者具有更高的电荷支化比相较于界面电荷转移(ICT)状态而言,分离(CS)状态更为有效,因此激子到CS的转换效率更高。对于PBDTTTC:PC_(61)BM,超快电荷动力学清楚地显示了ICT-CS相互转换和P〜(?+)迁移的过程,这可能受ICT多余能量的影响。但是,在PBDTTT-E:PC_(61)BM的情况下,此类过程相对不明显。这些结果有力地证明了ICT离解在产生自由电荷中的重要性,并从薄膜形态和先驱溶液相大分子构象方面进行了讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号