首页> 外文期刊>The Journal of Chemical Physics >Methanol synthesis on ZnO(0001). IV. Reaction mechanisms and electronic structure
【24h】

Methanol synthesis on ZnO(0001). IV. Reaction mechanisms and electronic structure

机译:在ZnO(0001)上合成甲醇。 IV。反应机理与电子结构

获取原文
获取原文并翻译 | 示例
           

摘要

Methanol synthesis from CO and H_2 over ZnO, which requires high temperatures and high pressures giving rise to a complex interplay of physical and chemical processes over this heterogeneous catalyst surface, is investigated using ab initio simulations. The redox properties of the surrounding gas phase are known to directly impact on the catalyst properties and thus, set the overall catalytic reactivity of this easily reducible oxide material. In Paper III of our series [J. Kiss, J. Frenzel, N. N. Nair, B. Meyer, and D. Marx, J. Chem. Phys. 134, 064710 (2011)] we have qualitatively shown that for the partially hydroxylated and defective ZnO(0001) surface there exists an intricate network of surface chemical reactions. In the present study, we employ advanced molecular dynamics techniques to resolve in detail this reaction network in terms of elementary steps on the defective surface, which is in stepwise equilibrium with the gas phase. The two individual reduction steps were investigated by ab initio metadynamics sampling of free energy landscapes in three-dimensional reaction subspaces. By also sampling adsorption and desorption processes and thus molecular species that are in the gas phase but close to the surface, our approach successfully generated several alternative pathways of methanol synthesis. The obtained results suggest an Eley-Rideal mechanism for both reduction steps, thus involving “near-surface” molecules from the gas phase, to give methanol preferentially over a strongly reduced catalyst surface, while important side reactions are of Langmuir-Hinshelwood type. Catalyst re-reduction by H_2 stemming from the gas phase is a crucial process after each reduction step in order to maintain the catalyst’s activity toward methanol formation and to close the catalytic cycle in some reaction channels. Furthermore, the role of oxygen vacancies, side reactions, and spectator species is investigated and mechanistic details are discussed based on extensive electronic structure analysis
机译:使用从头算模拟研究了在ZnO上由CO和H_2合成甲醇的过程,这需要高温和高压,从而在该非均相催化剂表面上引发复杂的物理和化学过程相互作用。已知周围气相的氧化还原性质直接影响催化剂的性质,因此设定了这种易还原的氧化物材料的总体催化反应性。在我们系列的论文三中[J. Kiss,J.Frenzel,N.N.Nair,B.Meyer和D.Marx,J.Chem。物理134,064710(2011)]定性地表明,对于部分羟基化且有缺陷的ZnO(0001)表面,存在复杂的表面化学反应网络。在本研究中,我们采用先进的分子动力学技术来详细解析此反应网络,该步骤涉及缺陷表面的基本步骤,该步骤与气相逐步平衡。通过从头开始对三维反应子空间中的自由能景观进行元动力学的元动力学采样研究了两个还原步骤。通过还对吸附和解吸过程以及气相中但靠近表面的分子种类进行采样,我们的方法成功地产生了甲醇合成的几种替代途径。获得的结果表明,两个还原步骤均采用Eley-Rideal机理,因此涉及气相中的“近表面”分子,优先于强还原的催化剂表面优先提供甲醇,而重要的副反应是Langmuir-Hinshelwood型。在每个还原步骤之后,通过气相产生的H_2还原催化剂是至关重要的过程,以保持催化剂对甲醇形成的活性并关闭某些反应通道中的催化循环。此外,基于广泛的电子结构分析,研究了氧空位,副反应和观众种类的作用,并讨论了机械细节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号