首页> 外文期刊>The Journal of Chemical Physics >Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection
【24h】

Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection

机译:丙酮酸的机制光脱羧:激发态质子转移和三态相交

获取原文
获取原文并翻译 | 示例
           

摘要

Photodissociation dynamics of pyruvic acid experimentally differs from that of commonly known ketones.We have employed the complete active space self-consistent field and its multi-state secondorder perturbation methods to study its photodissociation mechanism in the S_0, T_1, and S_1 states. We have uncovered four nonadiabatic photodecarboxylation paths. (i) The S_1 system relaxes via an excited-state intramolecular proton transfer (ESIPT) to a hydrogen-transferred tautomer, near which an S_1/S_0 conical intersection funnels the S_1 to S_0 state. Then, some trajectories continue completing the decarboxylation reaction in the S_0 state; the remaining trajectories via a reverse hydrogen transfer return to the S_0 minimum, from which a thermal decarboxylation reaction occurs. (ii) Due to a small S_1 ?T_1 energy gap and a large S_1/T_1 spin-orbit coupling, an efficient S_1 → T_1 intersystem crossing process happens again near this S_1/S_0 conical intersection. When decaying to T_1 state, a direct photodecarboxylation proceeds. (iii) Prior to ESIPT, the S_1 system first decays to the T_1 state via an S_1→T_1 intersystem crossing; then, the T_1 system evolves to a hydrogen-transferred tautomer. Therefrom, an adiabatic T_1 decarboxylation takes place due to a small barrier of 7.7 kcal/mol. (iv) Besides the aforementioned T_1 ESIPT process, there also exists a comparable Norrish type I reaction in the T_1 state, which forms the ground-state products of CH_3CO and COOH. Finally, we have found that ESIPT plays an important role. It closes the S_1-T_1 and S_1-S_0 energy gaps, effecting an S_1/T_1/S_0 three-state intersection region, and mediating nonadiabatic photodecarboxylation reactions of pyruvic acid.
机译:丙酮酸的光解离动力学与通常已知的酮不同,我们使用了完整的活性空间自洽场及其多态二阶摄动方法研究了其在S_0,T_1和S_1状态下的光解离机理。我们发现了四个非绝热的光脱羧途径。 (i)S_1系统通过激发态分子内质子转移(ESIPT)松弛到氢转移互变异构体,S_1 / S_0圆锥形相交点附近使S_1进入S_0状态。然后,一些轨迹在S_0状态下继续完成脱羧反应。通过反向氢转移的其余轨迹返回到S_0最小值,由此发生热脱羧反应。 (ii)由于较小的S_1?T_1能隙和较大的S_1 / T_1自旋轨道耦合,在此S_1 / S_0圆锥形交叉点附近再次发生了有效的S_1→T_1系统间交叉过程。当衰减到T_1状态时,进行直接的光脱羧。 (iii)在ESIPT之前,S_1系统首先通过S_1→T_1系统间交叉而衰减到T_1状态;然后,T_1系统演变为氢转移互变异构体。由此,由于7.7kcal / mol的小势垒,发生了绝热的T_1脱羧。 (iv)除了上述的T_1ESIPT方法之外,在T_1状态下还存在可比较的诺里斯I型反应,其形成CH_3CO和COOH的基态产物。最后,我们发现ESIPT发挥了重要作用。它缩小了S_1-T_1和S_1-S_0的能隙,影响了S_1 / T_1 / S_0三态相交区域,并介导了丙酮酸的非绝热光脱羧反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号