首页> 外文期刊>The Journal of Chemical Physics >Understanding the many-body expansion for large systems. I. Precision considerations
【24h】

Understanding the many-body expansion for large systems. I. Precision considerations

机译:了解大型系统的多主体扩展。一,精度考量

获取原文
获取原文并翻译 | 示例
           

摘要

Electronic structure methods based on low-order “n-body” expansions are an increasingly popular means to defeat the highly nonlinear scaling of ab initio quantum chemistry calculations, taking advantage of the inherently distributable nature of the numerous subsystem calculations. Here, we examine how the finite precision of these subsystem calculations manifests in applications to large systems, in this case, a sequence of water clusters ranging in size up to (H_2O)_(47). Using two different computer implementations of the n-body expansion, one fully integrated into a quantum chemistry program and the other written as a separate driver routine for the same program, we examine the reproducibility of total binding energies as a function of cluster size. The combinatorial nature of the n-body expansion amplifies subtle differences between the two implementations, especially for n ≥ 4, leading to total energies that differ by as much as several kcal/mol between two implementations of what is ostensibly the same method. This behavior can be understood based on a propagation-of-errors analysis applied to a closed-form expression for the n-body expansion, which is derived here for the first time. Discrepancies between the two implementations arise primarily from the Coulomb self-energy correction that is required when electrostatic embedding charges are implemented by means of an external driver program. For reliable results in large systems, our analysis suggests that script- or driver-based implementations should read binary output files from an electronic structure program, in full double precision, or better yet be fully integrated in a way that avoids the need to compute the aforementioned self-energy. Moreover, four-body and higher-order expansions may be too sensitive to numerical thresholds to be of practical use in large systems.
机译:利用低阶“ n体”展开的电子结构方法,利用众多子系统计算的固有可分配性,是克服从头算量子化学计算高度非线性缩放的一种越来越流行的方法。在这里,我们检查这些子系统计算的有限精度如何在大型系统的应用中体现出来,在这种情况下,一系列水簇的大小最大为(H_2O)_(47)。使用两种不同的n体展开的计算机实现方式,一种完全集成到量子化学程序中,另一种作为同一程序的单独驱动程序编写,我们研究了总结合能随簇大小的可再现性。 n体膨胀的组合性质会放大这两种实现方式之间的细微差异,尤其是对于n≥4而言,导致表面上看似相同方法的两种实现方式之间的总能量之差高达几千卡/摩尔。可以基于对n体展开的闭合形式表达式应用的误差传播分析来了解此行为,这是在此处首次得出的。两种实现方式之间的差异主要来自通过外部驱动程序实现静电嵌入电荷时所需的库仑自能校正。为了在大型系统中获得可靠的结果,我们的分析建议基于脚本或驱动程序的实现应从电子结构程序中以全双精度读取二进制输出文件,或者更好地将其完整集成,从而避免计算计算量。前述的自我能量。此外,四体和高阶展开可能对数值阈值过于敏感,以至于无法在大型系统中实际使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号