首页> 外文期刊>The Journal of Chemical Physics >Quantum theory of atoms in molecules/charge-charge flux-dipole flux models for fundamental vibrational intensity changes on H-bond formation of water and hydrogen fluoride
【24h】

Quantum theory of atoms in molecules/charge-charge flux-dipole flux models for fundamental vibrational intensity changes on H-bond formation of water and hydrogen fluoride

机译:分子中的原子量子理论/电荷-电荷通量-偶极子通量模型,用于分析水和氟化氢在氢键形成时的基本振动强度变化

获取原文
获取原文并翻译 | 示例
           

摘要

The Quantum Theory of Atoms In Molecules/Charge-Charge Flux-Dipole Flux (QTAIM/CCFDF) model has been used to investigate the electronic structure variations associated with intensity changes on dimerization for the vibrations of the water and hydrogen fluoride dimers as well as in the water-hydrogen fluoride complex. QCISD/cc-pVTZ wave functions applied in the QTAIM/CCFDF model accurately provide the fundamental band intensities of water and its dimer predicting symmetric and antisymmetric stretching intensity increases for the donor unit of 159 and 47 km mol~(?1) on H-bond formation compared with the experimental values of 141 and 53 km mol~(?1). The symmetric stretching of the proton donor water in the dimer has intensity contributions parallel and perpendicular to its C_(2v) axis. The largest calculated increase of 107 km mol~(?1) is perpendicular to this axis and owes to equilibrium atomic charge displacements on vibration. Charge flux decreases occurring parallel and perpendicular to this axis result in 42 and 40 km mol~(?1) total intensity increases for the symmetric and antisymmetric stretches, respectively. These decreases in charge flux result in intensity enhancements because of the interaction contributions to the intensities between charge flux and the other quantities. Even though dipole flux contributions are much smaller than the charge and charge flux ones in both monomer and dimer water they are important for calculating the total intensity values for their stretching vibrations since the charge-charge flux interaction term cancels the charge and charge flux contributions. The QTAIM/CCFDF hydrogen-bonded stretching intensity strengthening of 321 km mol~(?1) on HF dimerization and 592 km mol~(?1) on HF:H_2O complexation can essentially be explained by charge, charge flux and their interaction cross term. Atomic contributions to the intensities are also calculated. The bridge hydrogen atomic contributions alone explain 145, 237, and 574 km mol~(?1) of the H-bond stretching intensity enhancements for the water and HF dimers and their heterodimer compared with total increments of 149, 321, and 592 km mol~(?1), respectively.
机译:分子中的原子量子理论/电荷-电荷通量-偶极子通量(QTAIM / CCFDF)模型已用于研究与二聚化强度变化相关的电子结构变化,这些变化涉及水和氟化氢二聚体以及氢的二聚体的振动。水-氟化氢络合物。 QTAIM / CCFDF模型中应用的QCISD / cc-pVTZ波函数准确地提供了水的基带强度及其二聚体,预测了供体在159和47 km mol〜(?1)上对称和反对称的拉伸强度增加。与141和53 km mol〜(?1)的实验值相比,碳键形成。质子供体水在二聚体中的对称拉伸具有平行和垂直于其C_(2v)轴的强度贡献。所计算的最大增加量为107 km mol〜(?1)垂直于该轴,这归因于振动时原子电荷的平衡位移。平行于和垂直于该轴发生的电荷通量减小,导致对称和反对称拉伸的总强度分别增加42和40 km mol·(?1)。电荷通量的这些减小导致强度增强,因为相互作用对电荷通量和其他量之间的强度有贡献。即使偶极子通量贡献比单体和二聚体水中的电荷和电荷通量贡献要小得多,但由于电荷-电荷通量相互作用项会抵消电荷和电荷通量贡献,因此对于计算其拉伸振动的总强度值也很重要。 QTAIM / CCFDF氢二键化时321 km mol〜(?1)和HF:H_2O络合时592 km mol〜(?1)的氢键拉伸强度增强基本上可以通过电荷,电荷通量及其相互作用的交叉项来解释。 。还计算了原子对强度的贡献。水和HF二聚体及其杂二聚体的氢键拉伸强度增强仅由桥氢原子贡献解释了145、237和574 km mol〜(?1),而总增量为149、321和592 km mol。 〜(?1)。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号