...
首页> 外文期刊>The Journal of Chemical Physics >A mixed quantum-classical Liouville study of the population dynamics in a model photo-induced condensed phase electron transfer reaction
【24h】

A mixed quantum-classical Liouville study of the population dynamics in a model photo-induced condensed phase electron transfer reaction

机译:模型光诱导凝聚相电子转移反应中种群动力学的混合量子经典Liouville研究

获取原文
获取原文并翻译 | 示例
           

摘要

We apply two approximate solutions of the quantum-classical Liouville equation (QCLE) in the mapping representation to the simulation of the laser-induced response of a quantum subsystem coupled to a classical environment. These solutions, known as the Poisson Bracket Mapping Equation (PBME) and the Forward-Backward (FB) trajectory solutions, involve simple algorithms in which the dynamics of both the quantum and classical degrees of freedom are described in terms of continuous variables, as opposed to standard surface-hopping solutions in which the classical degrees of freedom hop between potential energy surfaces dictated by the discrete adiabatic state of the quantum subsystem. The validity of these QCLE-based solutions is tested on a non-trivial electron transfer model involving more than two quantum states, a time-dependent Hamiltonian, strong subsystem-bath coupling, and an initial energy shift between the donor and acceptor states that depends on the strength of the subsystem-bath coupling. In particular, we calculate the time-dependent population of the photoexcited donor state in response to an ultrafast, on-resonance pump pulse in a three-state model of an electron transfer complex that is coupled asymmetrically to a bath of harmonic oscillators through the optically dark acceptor state. Within this approach, the three-state electron transfer complex is treated quantum mechanically, while the bath oscillators are treated classically. When compared to the more accurate QCLE-based surface-hopping solution and to the numerically exact quantum results, we find that the PBME solution is not capable of qualitatively capturing the population dynamics, whereas the FB solution is. However, when the subsystem-bath coupling is decreased (which also decreases the initial energy shift between the donor and acceptor states) or the initial shift is removed altogether, both the PBME and FB results agree better with the QCLE-based surface-hopping results. These findings highlight the challenges posed by various conditions such as a time-dependent external field, the strength of the subsystem-bath coupling, and the degree of asymmetry on the accuracy of the PBME and FB algorithms.
机译:我们在映射表示中应用了量子经典Liouville方程(QCLE)的两个近似解,以模拟耦合至经典环境的量子子系统的激光诱导响应。这些解决方案被称为泊松括号映射方程(PBME)和前后(FB)轨迹解决方案,涉及简单的算法,其中量子和经典自由度的动力学都用连续变量来描述,与之相反到标准的表面跳变解法,其中经典的自由度在量子子系统的离散绝热状态所决定的势能面之间跳跃。这些基于QCLE的解决方案的有效性在涉及两个以上量子态,时间相关的哈密顿量,强子系统-浴耦合以及供体和受体之间的初始能量转移取决于两个以上量子态的非平凡电子传输模型上进行了测试。子系统-浴耦合的强度。特别是,我们通过电子传输复合体的三态模型(通过光学方式非对称地耦合到谐波振荡器池)来响应超快的共振泵浦脉冲,计算光激发供体态的时间依赖性种群黑暗受体状态。在这种方法中,对三态电子转移复合物进行量子力学处理,而对浴振荡器进行经典处理。当与更精确的基于QCLE的表面跳变解和数值精确的量子结果进行比较时,我们发现PBME解决方案不能定性地捕获总体动力学,而FB解决方案却可以。但是,当子系统-浴耦合减小(这也减小了供体和受体状态之间的初始能量偏移)或完全消除了初始偏移时,PBME和FB结果都与基于QCLE的表面跳跃结果更好地吻合。这些发现凸显了各种条件所带来的挑战,例如随时间变化的外部场,子系统-浴耦合的强度以及PBME和FB算法准确性的不对称程度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号