首页> 外文期刊>The Journal of Chemical Physics >Active patterning and asymmetric transport in a model actomyosin network
【24h】

Active patterning and asymmetric transport in a model actomyosin network

机译:模型肌动球蛋白网络中的主动构图和不对称转运

获取原文
获取原文并翻译 | 示例
           

摘要

Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.
机译:细胞骨架网络本质上是运动丝组件,在涉及结构重塑和形状变化的许多发展过程中起着重要作用。这些是通过产生功能模式并驱动细胞内转运的非平衡自组织过程实现的。我们构建了一个最小的物理模型,其中包含了各个细丝的非线性弹性响应与力相关的电机动作之间的耦合。通过执行随机模拟,我们发现运动过程的相互作用(被描述为驱动网络顶点的反相关运动)和网络连通性(确定了结构的渗透特性)确实可以捕获动态和结构协作性,从而产生了实验观察到的各种模式。由于局部力不平衡,发现单个细丝的屈曲不稳定性在局部塌陷事件中起关键作用。电机驱动的屈曲引起的节点聚集提供了一种动态机制,可将二维模式稳定在表观静态渗透极限以下。还显示了协调的电动机动作可以在较大的时间范围内抑制随机的热噪声,该系统以二维配置开始,因此在结构开发过程中保持平面状态。通过对三维锚定网络进行类似的模拟,我们发现,良好连接的肌动蛋白网络的肌球蛋白驱动的各向同性收缩,与赋予集体运动方向性的机械锚定相结合,可能代表了细胞内新机制如海星卵母细胞中染色体易位所揭示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号