首页> 外文期刊>The Journal of Chemical Physics >Pyrolysis of furan in a microreactor
【24h】

Pyrolysis of furan in a microreactor

机译:呋喃在微反应器中的热解

获取原文
获取原文并翻译 | 示例
           

摘要

A silicon carbide microtubular reactor has been used to measure branching ratios in the thermal decomposition of furan, C_4H_4O. The pyrolysis experiments are carried out by passing a dilute mixture of furan (approximately 0.01%) entrained in a stream of helium through the heated reactor. The SiC reactor (0.66 mm i.d., 2 mm o.d., 2.5 cm long) operates with continuous flow. Experiments were performed with a reactor inlet pressure of 100-300 Torr and a wall temperature between 1200 and 1600 K; characteristic residence times in the reactor are 60-150 μs. The unimolecular decomposition pathway of furan is confirmed to be: furan (+ M) α-carbene or β-carbene. The α-carbene fragments to CH_2=C=O + HC≡CH while the β-carbene isomerizes to CH_2=C=CHCHO. The formyl allene can isomerize to CO + CH_3C≡CH or it can fragment to H + CO + HCCCH_2. Tunable synchrotron radiation photoionization mass spectrometry is used to monitor the products and to measure the branching ratio of the two carbenes as well as the ratio of [HCCCH_2/CH_3C≡CH]. The results of these pyrolysis experiments demonstrate a preference for 80%-90% of furan decomposition to occur via the β-carbene. For reactor temperatures of 1200-1400 K, no propargyl radicals are formed. As the temperature rises to 1500-1600 K, at most 10% of the decomposition of CH_2=C=CHCHO produces H + CO + HCCCH_2 radicals. Thermodynamic conditions in the reactor have been modeled by computational fluid dynamics and the experimental results are compared to the predictions of three furan pyrolysis mechanisms. Uncertainty in the pressure-dependency of the initiation reaction rates is a possible a source of discrepancy between experimental results and theoretical predictions.
机译:碳化硅微管反应器已用于测量呋喃C_4H_4O热分解中的支化比。通过使夹带在氦气流中的呋喃的稀混合物(约0.01%)通过加热的反应器来进行热解实验。 SiC反应器(内径0.66毫米,外径2毫米,长2.5厘米)以连续流动的方式运行。实验是在反应器入口压力为100-300 Torr且壁温为1200至1600 K之间进行的;在反应器中的特征停留时间为60-150μs。呋喃的单分子分解途径被确认为:呋喃(+ M)α-卡宾或β-卡宾。 α-卡宾片段化为CH_2 = C = O + HC = CH,而β-卡宾异构化为CH_2 = C = CHCHO。甲酰基丙二烯可以异构化为CO +CH_3C≡CH,也可以片段化为H + CO + HCCCH_2。可调谐同步加速器辐射光电离质谱法用于监测产物并测量两种碳烯的支化比以及[HCCCH_2 /CH_3C≡CH]的比值。这些热解实验的结果表明,优选80%-90%的呋喃通过β-卡宾分解。对于1200-1400K的反应器温度,不形成炔丙基。随着温度升高到1500-1600 K,CH_2 = C = CHCHO的分解最多10%产生H + CO + HCCCH_2自由基。通过计算流体动力学对反应器中的热力学条件进行了建模,并将实验结果与三种呋喃热解机理的预测结果进行了比较。引发反应速率的压力依赖性不确定性可能是实验结果与理论预测之间差异的来源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号