首页> 外文期刊>The Journal of Chemical Physics >Insights into hydrogen bond dynamics at the interface of the charged monolayer-protected Au nanoparticle from molecular dynamics simulation
【24h】

Insights into hydrogen bond dynamics at the interface of the charged monolayer-protected Au nanoparticle from molecular dynamics simulation

机译:从分子动力学模拟洞察带电单层保护金纳米颗粒界面的氢键动力学

获取原文
获取原文并翻译 | 示例
           

摘要

The structure and dynamics properties of water molecules at the interface of the charged monolayer-protected Au nanoparticle (MPAN) have been investigated in detail by using classical molecular dynamics simulation. The simulation results demonstrated clearly that a well-defined hydration layer is formed at the interface of MPAN and a stable "ion wall" consisting of terminal NH 3+ groups and Cl~- counterions exists at the outmost region of self-assembled monolayer (SAM) where the translational and rotational motions of water molecules slow considerably down compared to those in the bulk owing to the presence of SAM and ion wall. Furthermore, we found that the translational motions of interfacial water molecules display a subdiffusive behavior while their rotational motions exhibit a nonexponential feature. The unique behavior of interfacial water molecules around the MPAN can be attributed to the interfacial hydrogen bond (HB) dynamics. By comparison, the lifetime of NH 3+-Cl~- HBs was found to be the longest, favoring the stability of ion wall. Meanwhile, the lifetime of H_2O-H_2O HBs shows an obvious increase when the water molecules approach the Au core, suggesting the enhanced H_2O-H_2O HBs around the charged MPAN, which is contrary to the weaken H_2O-H_2O HBs around the neutral MPAN. Moreover, the HB lifetimes between water molecules and the ion wall (i.e., the Cl--H_2O and NH 3+~-H_2O HBs) are much longer than that of interfacial H_2O-H_2O HBs, which leads to the increasing rotational relaxation time and residence time of water molecules surrounding the ion wall. In addition, the corresponding binding energies for different HB types obtained from the precise density functional theory are in excellent accordance with above simulation results. The detailed HB dynamics studied in this work provides insights into the unique behavior of water molecules at the interface of charged self-assemblies of nanoparticles as well as proteins.
机译:通过经典的分子动力学模拟,对带电的单层保护金纳米颗粒(MPAN)界面上水分子的结构和动力学性质进行了详细研究。仿真结果清楚地表明,在MPAN的界面处形成了清晰的水合层,并且自组装单分子层(SAM)的最外层区域存在着稳定的由末端NH 3+基团和Cl〜-离子组成的“离子壁”。 ),由于存在SAM和离子壁,水分子的平移和旋转运动比整体中的慢得多。此外,我们发现界面水分子的平移运动表现出亚扩散行为,而其旋转运动表现出非指数特征。 MPAN周围的界面水分子的独特行为可归因于界面氢键(HB)动力学。相比之下,NH 3 + -Cl〜-HBs的寿命最长,有利于离子壁的稳定性。同时,当水分子接近金核时,H_2O-H_2O HBs的寿命明显增加,表明带电的MPAN周围的H_2O-H_2O HBs增强,这与中性MPAN周围的H_2O-H_2O HBs弱化相反。此外,水分子和离子壁之间的HB寿命(即Cl--H_2O和NH 3 +〜-H_2O HBs)比界面H_2O-H_2O HBs的寿命长得多,这导致旋转弛豫时间增加和水分子在离子壁周围的停留时间。此外,从精确密度泛函理论获得的不同HB类型的相应结合能与上述模拟结果非常吻合。在这项工作中研究的详细HB动力学提供了对水分子在纳米粒子以及蛋白质的带电自组装体界面的独特行为的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号