首页> 外文期刊>The Journal of Chemical Physics >Response calculations based on an independent particle system with the exact one-particle density matrix: Excitation energies
【24h】

Response calculations based on an independent particle system with the exact one-particle density matrix: Excitation energies

机译:基于具有精确的单粒子密度矩阵的独立粒子系统的响应计算:激发能

获取原文
获取原文并翻译 | 示例
           

摘要

Adiabatic response time-dependent density functional theory (TDDFT) suffers from the restriction to basically an occupied → virtual single excitation formulation. Adiabatic time-dependent density matrix functional theory allows to break away from this restriction. Problematic excitations for TDDFT, viz. bonding-antibonding, double, charge transfer, and higher excitations, are calculated along the bond-dissociation coordinate of the prototype molecules H _2 and HeH using the recently developed adiabatic linear response phase-including (PI) natural orbital theory (PINO). The possibility to systematically increase the scope of the calculation from excitations out of (strongly) occupied into weakly occupied ("virtual") natural orbitals to larger ranges of excitations is explored. The quality of the PINO response calculations is already much improved over TDDFT even when the severest restriction is made, to virtually the size of the TDDFT diagonalization problem (only single excitation out of occupied orbitals plus all diagonal doubles). Further marked improvement is obtained with moderate extension to allow for excitation out of the lumo and lumo1, which become fractionally occupied in particular at longer distances due to left-right correlation effects. In the second place the interpretation of density matrix response calculations is elucidated. The one-particle reduced density matrix response for an excitation is related to the transition density matrix to the corresponding excited state. The interpretation of the transition density matrix in terms of the familiar excitation character (single excitations, double excitations of various types, etc.) is detailed. The adiabatic PINO theory is shown to successfully resolve the problematic cases of adiabatic TDDFT when it uses a proper PI orbital functional such as the PILS functional.
机译:绝热响应时间依赖密度泛函理论(TDDFT)受制于对基本占据→虚拟单激发公式的限制。依赖时间的绝热密度矩阵泛函理论可以打破这一限制。 TDDFT有问题的激励,即。使用最近开发的绝热线性响应相-包括(PI)自然轨道理论(PINO),沿着原型分子H _2和HeH的键解离坐标计算键-反键,双键,电荷转移和更高的激发。探索了系统地将计算范围从(强)占据到弱占据(“虚拟”)自然轨道的激发扩展到更大范围的激发的可能性。即使对TDDFT对角化问题的大小进行了最严格的限制,PINO响应计算的质量也已经比TDDFT大大提高了(仅占空轨道的单个激发加所有对角线加倍)。通过适度扩展获得进一步显着的改进,以允许激发出lumo和lumo1,由于左右相关效应,它们特别是在更长的距离处被部分占据。其次,阐明了密度矩阵响应计算的解释。激发的单粒子降低密度矩阵响应与到相应激发态的跃迁密度矩阵有关。详细介绍了根据熟悉的激励特性(单激励,各种类型的双激励等)对跃迁密度矩阵的解释。当使用适当的PI轨道函数(例如PILS函数)时,绝热的PINO理论可以成功解决绝热TDDFT的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号