首页> 外文期刊>The Journal of Chemical Physics >Dipolar response of hydrated proteins
【24h】

Dipolar response of hydrated proteins

机译:水合蛋白的偶极反应

获取原文
获取原文并翻译 | 示例
           

摘要

The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins in solution. We calculate the effective dielectric constant representing the average dipole moment induced at the protein by a uniform external field. The dielectric constant shows a remarkable variation among the proteins, changing from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility, that is a dia-electric dipolar response and negative dielectrophoresis. It means that ubiquitin, carrying an average dipole of ?240 D, is expected to repel from the region of a stronger electric field. This outcome is the result of a negative cross-correlation between the protein and water dipoles, compensating for the positive variance of the intrinsic protein dipole in the overall dipolar susceptibility. In contrast to the neutral ubiquitin, charged proteins studied here show para-electric dipolar response and positive dielectrophoresis. The study suggests that the dipolar response of proteins in solution is strongly affected by the coupling of the protein surface charge to the hydration water. The protein-water dipolar cross-correlations are long-ranged, extending ~2 nm from the protein surface into the bulk. A similar correlation length of about 1 nm is seen for the electrostatic potential produced by the hydration water inside the protein. The analysis of numerical simulations suggests that the polarization of the protein-water interface is highly heterogeneous and does not follow the standard dielectric results for cavities carved in dielectrics. The polarization of the water shell gains in importance, relative to the intrinsic protein dipole, at high frequencies, above the protein Debye peak. The induced interfacial dipole can be either parallel or antiparallel to the protein dipole, depending on the distribution of the protein surface charge. As a result, the high-frequency absorption of the protein solution can be either higher or lower than the absorption of water. Both scenarios have been experimentally observed in the THz window of radiation.
机译:本文介绍了溶液中水合蛋白的偶极响应的分析理论和数值模拟。我们计算有效介电常数,代表由均匀外部电场在蛋白质上感应的平均偶极矩。介电常数显示蛋白质之间的显着变化,从泛素的0.5变为细胞色素c的640。前一个值表示负偶极磁化率,即介电偶极响应和负介电电泳。这意味着泛素平均携带约240 D的偶极子,有望从更强的电场区域排斥。该结果是蛋白质和水偶极子之间的负互相关的结果,补偿了整体偶极子敏感性中固有蛋白质偶极子的正方差。与中性泛素相反,此处研究的带电蛋白显示了顺电偶极响应和正介电电泳。研究表明,溶液中蛋白质的偶极响应受蛋白质表面电荷与水合水的耦合的强烈影响。蛋白质-水偶极子的互相关是长距离的,从蛋白质表面到整个本体延伸约2 nm。对于蛋白质内部的水合水产生的静电势,可以看到大约1 nm的相似相关长度。数值模拟分析表明,蛋白质-水界面的极化非常不均一,并且不遵循在电介质中雕刻的空腔的标准电介质结果。相对于固有蛋白质偶极子,水壳的极化在蛋白质Debye峰以上时在高频时变得越来越重要。诱导的界面偶极子可以与蛋白质偶极子平行或反平行,这取决于蛋白质表面电荷的分布。结果,蛋白质溶液的高频吸收可以高于或低于水的吸收。在辐射的太赫兹窗口中都通过实验观察到了这两种情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号