首页> 外文期刊>The Journal of Chemical Physics >Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly
【24h】

Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly

机译:聚合物保护的纳米粒子自组装的耗散粒子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Dissipative particle dynamics simulations were used to study the effects of mixing time, solute solubility, solute and diblock copolymer concentrations, and copolymer block length on the rapid coprecipitation of polymer-protected nanoparticles. The simulations were aimed at modeling Flash NanoPrecipitation, a process in which hydrophobic solutes and amphiphilic block copolymers are dissolved in a water-miscible organic solvent and then rapidly mixed with water to produce composite nanoparticles. A previously developed model by Spaeth J. Chem. Phys. 134, 164902 (2011)10.1063/1.3580293 was used. The model was parameterized to reproduce equilibrium and transport properties of the solvent, hydrophobic solute, and diblock copolymer. Anti-solvent mixing was modeled using time-dependent solvent-solute and solvent-copolymer interactions. We find that particle size increases with mixing time, due to the difference in solute and polymer solubilities. Increasing the solubility of the solute leads to larger nanoparticles for unfavorable solute-polymer interactions and to smaller nanoparticles for favorable solute-polymer interactions. A decrease in overall solute and polymer concentration produces smaller nanoparticles, because the difference in the diffusion coefficients of a single polymer and of larger clusters becomes more important to their relative rates of collisions under more dilute conditions. An increase in the solute-polymer ratio produces larger nanoparticles, since a collection of large particles has less surface area than a collection of small particles with the same total volume. An increase in the hydrophilic block length of the polymer leads to smaller nanoparticles, due to an enhanced ability of each polymer to shield the nanoparticle core. For unfavorable solute-polymer interactions, the nanoparticle size increases with hydrophobic block length. However, for favorable solute-polymer interactions, nanoparticle size exhibits a local minimum with respect to the hydrophobic block length. Our results provide insights on ways in which experimentally controllable parameters of the Flash NanoPrecipitation process can be used to influence aggregate size and composition during self-assembly.
机译:耗散粒子动力学模拟用于研究混合时间,溶质溶解度,溶质和二嵌段共聚物浓度以及共聚物嵌段长度对聚合物保护的纳米粒子快速共沉淀的影响。这些模拟旨在对Flash NanoPrecipitation进行建模,该过程是将疏水性溶质和两亲性嵌段共聚物溶解在与水混溶的有机溶剂中,然后与水快速混合以生产复合纳米粒子的过程。 Spaeth J. Chem。先前开发的模型。物理134,164902(2011)10.1063 / 1.3580293。参数化模型以重现溶剂,疏水性溶质和二嵌段共聚物的平衡和传输性质。使用与时间有关的溶剂-溶质和溶剂-共聚物相互作用对反溶剂混合进行建模。我们发现,由于溶质和聚合物溶解度的差异,粒度随着混合时间的增加而增加。溶质的溶解度增加会导致较大的纳米颗粒(不利于溶质-聚合物相互作用),导致较小的纳米颗粒(有利于溶质-聚合物相互作用)。整体溶质和聚合物浓度的降低会产生较小的纳米颗粒,因为在更稀的条件下,单个聚合物和较大簇的扩散系数差异对它们的相对碰撞速率变得更为重要。溶质-聚合物比率的增加会产生较大的纳米颗粒,因为与相同总体积的小颗粒相比,大颗粒的集合具有更少的表面积。聚合物的亲水嵌段长度的增加导致较小的纳米颗粒,这是由于每种聚合物屏蔽纳米颗粒核的能力增强。对于不利的溶质-聚合物相互作用,纳米颗粒尺寸随疏水嵌段长度的增加而增加。然而,为了有利的溶质-聚合物相互作用,纳米颗粒尺寸相对于疏水嵌段长度表现出局部最小值。我们的结果提供了有关闪速纳米沉淀过程的实验可控参数可用于影响自组装过程中聚集体尺寸和组成的方法的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号