...
首页> 外文期刊>The Journal of Chemical Physics >Rupture kinetics of liquid bridges during a pulling process: A kinetic density functional theory study
【24h】

Rupture kinetics of liquid bridges during a pulling process: A kinetic density functional theory study

机译:牵拉过程中液桥的断裂动力学:动力学密度泛函理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

Capillary bridge is a common phenomenon in nature and can significantly contribute to the adhesion of biological and artificial micro- and nanoscale objects. Especially, it plays a crucial role in the operation of atomic force microscopy (AFM) and influences in the measured force. In the present work, we study the rupture kinetics and transition pathways of liquid bridges connecting an AFM tip and a flat substrate during a process of pulling the tip off. Depending on thermodynamic conditions and the tip velocity, two regimes corresponding to different transition pathways are identified. In the single-bridge regime, the initial equilibrium bridge persists as a single one during the pulling process until the liquid bridge breaks. While, in the multibridge regime the stretched liquid bridge transforms into an intermediate state with a collection of slender liquid bridges, which then break gradually during the pulling process. Moreover, the critical rupture distance at which the bridges break changes with the tip velocity and thermodynamic conditions, and its maximum value occurs near the boundary between the single-bridge regime and the multibridge regime, where the longest range capillary force is produced. In this work, the effects of tip velocity, tip size, tip-fluid interaction, and humidity on rupture kinetics and transition pathways are also systematically studied.
机译:毛细血管桥是自然界中的常见现象,可显着促进生物和人工微米级和纳米级物体的粘附。特别是,它在原子力显微镜(AFM)的操作中起着至关重要的作用,并影响到测得的力。在目前的工作中,我们研究了在拉动吸头的过程中连接AFM吸头和平坦基板的液桥的断裂动力学和过渡路径。根据热力学条件和叶尖速度,确定了与不同过渡路径相对应的两种状态。在单桥状态下,初始平衡桥在拉拔过程中会一直保持为单个桥,直到液桥断裂。同时,在多桥状态下,拉伸的液桥转变为带有细长液桥集合的中间状态,然后在拉拔过程中逐渐断裂。此外,桥断裂的临界破裂距离随尖端速度和热力学条件而变化,并且其最大值出现在单桥状态和多桥状态之间的边界附近,在该边界处产生最长范围的毛细作用力。在这项工作中,还系统研究了尖端速度,尖端尺寸,尖端流体相互作用和湿度对破裂动力学和过渡路径的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号