...
首页> 外文期刊>The Journal of Chemical Physics >Density functional study of multiplicity-changing valence and Rydberg excitations of p-block elements: Delta self-consistent field, collinear spin-flip time-dependent density functional theory (DFT), and conventional time-dependent DFT
【24h】

Density functional study of multiplicity-changing valence and Rydberg excitations of p-block elements: Delta self-consistent field, collinear spin-flip time-dependent density functional theory (DFT), and conventional time-dependent DFT

机译:p块元素多重变价和Rydberg激发的密度泛函研究:δ自洽场,共线自旋翻转时变密度泛函理论(DFT)和常规时变DFT

获取原文
获取原文并翻译 | 示例
           

摘要

A database containing 17 multiplicity-changing valence and Rydberg excitation energies of p-block elements is used to test the performance of density functional theory (DFT) with approximate density functionals for calculating relative energies of spin states. We consider only systems where both the low-spin and high-spin state are well described by a single Slater determinant, thereby avoiding complications due to broken-symmetry solutions. Because the excitations studied involve a spin change, they require a balanced treatment of exchange and correlation, thus providing a hard test for approximate density functionals. We test three formalisms for predicting the multiplicity-changing transition energies. First is the ΔSCF method; we also test time-dependent density functional theory (TDDFT), both in its conventional form starting from the low-spin state and in its collinear spin-flip form starting from the high-spin state. Very diffuse basis functions are needed to give a qualitatively correct description of the Rydberg excitations. The scalar relativistic effect needs to be considered when quantitative results are desired, and we include it in the comparisons. With the ΔSCF method, most of the tested functionals give mean unsigned errors (MUEs) larger than 6 kcalmol for valence excitations and MUEs larger than 3 kcalmol for Rydberg excitations, but the performance for the Rydberg states is much better than can be obtained with time-dependent DFT. It is surprising to see that the long-range corrected functionals, which have 100% Hartree-Fock exchange at large inter-electronic distance, do not improve the performance for Rydberg excitations. Among all tested density functionals, ΔSCF calculations with the O3LYP, M08-HX, and OLYP functionals give the best overall performance for both valence and Rydberg excitations, with MUEs of 2.1, 2.6, and 2.7 kcalmol, respectively. This is very encouraging since the MUE of the CCSD(T) coupled cluster method with quintuple zeta basis sets is 2.0 kcalmol; however, caution is advised since many popular density functionals give poor results, and there can be very significant differences between the ΔSCF predictions and those from TDDFT.
机译:一个包含17个p嵌段元素的多变价和Rydberg激发能的数据库用于测试具有近似密度泛函的密度泛函理论(DFT)的性能,以计算自旋态的相对能。我们仅考虑通过一个Slater行列式很好地描述了低旋转状态和高旋转状态的系统,从而避免了由于对称性解决方案破裂而造成的复杂性。因为研究的激发涉及自旋变化,所以它们需要交换和相关性的平衡处理,从而为近似密度泛函提供了硬性测试。我们测试了三种形式主义,以预测多重变化的跃迁能量。首先是ΔSCF方法;我们还测试了时变密度泛函理论(TDDFT),无论是传统形式的从低旋转状态开始还是共线旋转翻转的形式(从高旋转状态开始)。需要非常弥散的基函数来对Rydberg激发进行定性的正确描述。当需要定量结果时,需要考虑标量相对论效应,我们将其包括在比较中。使用ΔSCF方法时,大多数测试的官能团对于化合价激发给出的平均无符号误差(MUE)大于6 kcalmol,对于Rydberg激发给出的MUE大于3 kcalmol,但是Rydberg态的性能要好于随时间获得的性能依赖的DFT。令人惊讶的是,在较大的电子间距离处具有100%Hartree-Fock交换的远程校正功能无法改善Rydberg激发的性能。在所有测试的密度泛函中,使用O3LYP,M08-HX和OLYP泛函进行ΔSCF计算可获得价态和里德堡激发的最佳整体性能,MUE分别为2.1、2.6和2.7 kcalmol。这是非常令人鼓舞的,因为具有五重zeta基集的CCSD(T)耦合簇方法的MUE为2.0 kcalmol;但是,由于许多流行的密度函数给出的结果较差,因此建议谨慎,并且ΔSCF预测与TDDFT的预测之间可能会有非常显着的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号