...
首页> 外文期刊>The Journal of Chemical Physics >Electrical and ionic conductivity effects on magic-angle spinning nuclear magnetic resonance parameters of CuI
【24h】

Electrical and ionic conductivity effects on magic-angle spinning nuclear magnetic resonance parameters of CuI

机译:电和离子电导率对CuI魔角旋转核磁共振参数的影响

获取原文
获取原文并翻译 | 示例

摘要

We investigate experimentally and theoretically the effects of two different types of conductivity, electrical and ionic, upon magic-angle spinning NMR spectra. The experimental demonstration of these effects involves 63Cu, 65Cu, and 127I variable temperature MAS-NMR experiments on samples of -CuI, a Cu+-ion conductor at elevated temperatures as well as a wide bandgap semiconductor. We extend previous observations that the chemical shifts depend very strongly upon the square of the spinning-speed as well as the particular sample studied and the magnetic field strength. By using the 207Pb resonance of lead nitrate mixed with the -CuI as an internal chemical shift thermometer we show that frictional heating effects of the rotor do not account for the observations. Instead, we find that spinning bulk CuI, a p-type semiconductor due to Cu + vacancies in nonstoichiometric samples, in a magnetic field generates induced AC electric currents from the Lorentz force that can resistively heat the sample by over 200 C. These induced currents oscillate along the rotor spinning axis at the spinning speed. Their associated heating effects are disrupted in samples containing inert filler material, indicating the existence of macroscopic current pathways between micron-sized crystallites. Accurate measurements of the temperature-dependence of the 63Cu and 127I chemical shifts in such diluted samples reveal that they are of similar magnitude (ca. 0.27 ppmK) but opposite sign (being negative for 63Cu), and appear to depend slightly upon the particular sample. This relationship is identical to the corresponding slopes of the chemical shifts versus square of the spinning speed, again consistent with sample heating as the source of the observed large shift changes. Higher drive-gas pressures are required to spin samples that have higher effective electrical conductivities, indicating the presence of a braking effect arising from the induced currents produced by rotating a conductor in a homogeneous magnetic field. We present a theoretical analysis and finite-element simulations that account for the magnitude and rapid time-scale of the resistive heating effects and the quadratic spinning speed dependence of the chemical shift observed experimentally. Known thermophysical properties are used as inputs to the model, the sole adjustable parameter being a scaling of the bulk thermal conductivity of CuI in order to account for the effective thermal conductivity of the rotating powdered sample. In addition to the dramatic consequences of electrical conductivity in the sample, ionic conductivity also influences the spectra. All three nuclei exhibit quadrupolar satellite transitions extending over several hundred kilohertz that reflect defects perturbing the cubic symmetry of the zincblende lattice. Broadening of these satellite transitions with increasing temperature arises from the onset of Cu+ ion jumps to sites with different electric field gradients, a process that interferes with the formation of rotational echoes. This broadening has been quantitatively analyzed for the 63Cu and 65Cu nuclei using a simple model in the literature to yield an activation barrier of 0.64 eV (61.7 kJmole) for the Cu+ ion jumping motion responsible for the ionic conductivity that agrees with earlier results based on 63Cu NMR relaxation times of static samples.
机译:我们通过实验和理论研究两种不同类型的电导率(电和离子)对魔角旋转NMR光谱的影响。这些效应的实验证明涉及对-CuI,高温下的Cu +离子导体以及宽带隙半导体的样品-CuI进行63Cu,65Cu和127I可变温度MAS-NMR实验。我们扩展了先前的观察结果,即化学位移在很大程度上取决于纺丝速度的平方以及所研究的特定样品和磁场强度。通过将硝酸铅与-CuI混合的207Pb共振用作内部化学位移温度计,我们证明了转子的摩擦加热效应无法解释这些现象。取而代之的是,我们发现在磁场中旋转大块CuI(一种由于非化学计量样品中的Cu +空位而导致的p型半导体)在磁场中产生的洛伦兹力产生感应的交流电流,该电流可以将样品电阻加热200摄氏度以上。这些感应电流沿转子旋转轴以旋转速度振荡。它们相关的热效应在含有惰性填料的样品中被破坏,表明微米级微晶之间存在宏观电流通路。准确测量这些稀释样品中63Cu和127I化学位移的温度依赖性表明,它们的大小相似(约0.27 ppmK),但符号相反(对63Cu呈负值),并且似乎与特定样品略有相关。这种关系与化学位移相对于纺丝速度平方的对应斜率相同,再次与样品加热一致,因为观察到的大位移变化源于样品加热。旋转具有较高有效电导率的样品需要更高的驱动气体压力,这表明存在制动效应,该制动效应是由于在均匀磁场中旋转导体而产生的感应电流引起的。我们提供了理论分析和有限元模拟,这些模拟考虑了电阻加热效应的大小和快速时间尺度以及实验观察到的化学位移的二次旋转速度依赖性。已知的热物理性质用作模型的输入,唯一可调整的参数是CuI的整体热导率的比例,以便考虑旋转粉末状样品的有效热导率。除了样品中电导率的巨大后果外,离子电导率还影响光谱。所有这三个核均表现出四百多赫兹的四极卫星跃迁,这些跃迁反映出扰动闪锌矿晶格的立方对称性的缺陷。随着温度升高,这些卫星跃迁变宽是由于Cu +离子跃迁到具有不同电场梯度的位置而引起的,该过程会干扰旋转回波的形成。已使用文献中的简单模型对63Cu和65Cu核的扩宽进行了定量分析,以产生0.64 eV(61.7 kJmole)的激活势垒,这是因为Cu +离子跳跃运动导致离子电导率与基于63Cu的早期结果相符静态样品的NMR弛豫时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号