首页> 外文期刊>The Journal of Chemical Physics >First passage time distribution in stochastic processes with moving and static absorbing boundaries with application to biological rupture experiments
【24h】

First passage time distribution in stochastic processes with moving and static absorbing boundaries with application to biological rupture experiments

机译:带有移动和静态吸收边界的随机过程中的初次通过时间分布及其在生物破裂实验中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

We develop and investigate an integral equation connecting the first passage time distribution of a stochastic process in the presence of an absorbing boundary condition and the corresponding Green's function in the absence of the absorbing boundary. Analytical solutions to the integral equations are obtained for three diffusion processes in time-independent potentials which have been previously investigated by other methods. The integral equation provides an alternative way to analytically solve the three diffusion-controlled reactive processes. In order to help analyze biological rupture experiments, we further investigate the numerical solutions of the integral equation for a diffusion process in a time-dependent potential. Our numerical procedure, based on the exact integral equation, avoids the adiabatic approximation used in previous analytical theories and is useful for fitting the rupture force distribution data from single-molecule pulling experiments or molecular dynamics simulation data, especially at larger pulling speeds, larger cantilever spring constants, and smaller reaction rates. Stochastic simulation results confirm the validity of our numerical procedure. We suggest combining a previous analytical theory with our integral equation approach to analyze the kinetics of force induced rupture of biomacromolecules.
机译:我们开发并研究了一个积分方程,该积分方程在存在吸收边界条件的情况下将随机过程的第一次通过时间分布与在没有吸收边界的情况下的相应格林函数联系起来。对于三个与时间无关的电势的扩散过程,已经获得了积分方程的解析解,之前已通过其他方法对其进行了研究。积分方程式提供了另一种方法来解析求解三个扩散控制的反应过程。为了帮助分析生物破裂实验,我们进一步研究了时变势中扩散过程积分方程的数值解。我们基于精确积分方程的数值程序避免了先前分析理论中使用的绝热近似,并且对于拟合来自单分子拉伸实验或分子动力学模拟数据的断裂力分布数据非常有用,尤其是在更大拉伸速度,更大悬臂的情况下弹簧常数和较小的反应速率。随机模拟结果证实了我们数值程序的有效性。我们建议将先前的分析理论与我们的积分方程方法相结合,以分析力引起的生物大分子破裂的动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号