首页> 外文期刊>The Journal of Chemical Physics >Density-based energy decomposition analysis for intermolecular interactions with variationally determined intermediate state energies
【24h】

Density-based energy decomposition analysis for intermolecular interactions with variationally determined intermediate state energies

机译:基于分子密度的能量分解分析,用于分子间相互作用并以可变方式确定中间态能量

获取原文
获取原文并翻译 | 示例
           

摘要

The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu–Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003)]. This variational process dispenses with the Heitler–London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these two terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.
机译:在密度泛函理论中开发了第一个纯基于分子间结合的基于密度的能量分解分析(EDA)。该方案的最重要特征是基于约束搜索形式并用Wu-Yang算法实现[Q. Wu and W. Yang,J. Chem。物理118,2498(2003)]。这种变分过程省去了以前大多数方法中使用的海特勒-伦敦反对称波函数,并一起计算了静电和保利排斥能,而没有冻结密度的任何畸变,这一重要事实使我们可以轻松地从松弛中分离出这两个项(即极化和电荷转移)项。新的EDA还采用了约束密度泛函理论方法[Q. Wu和T. Van Voorhis,物理学。 Rev.A 72,24502(2005)]以分离出电荷转移效应。因为电荷转移能量是基于真实空间中的密度流,所以它具有很小的基集依赖性。将该分解应用于水二聚体和甲酰胺二聚体中的氢键,表明与这些相互作用的非共价性质相一致,冻结的密度能主导了这些系统中的结合。更详细的检查揭示了静电与泡利斥力的相互作用如何确定这些氢键的距离和角度依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号