首页> 外文期刊>The Journal of Chemical Physics >Understanding self-assembly of rod-coil copolymer in nanoslits
【24h】

Understanding self-assembly of rod-coil copolymer in nanoslits

机译:了解纳米缝隙中棒-卷共聚物的自组装

获取原文
获取原文并翻译 | 示例
           

摘要

Rod-coil diblock copolymers are a special kind of molecule containing a rigid rod and a flexible part. We present a systematic study on self-assembly of the rod-coil copolymers in nanoslits using a hybrid density functional theory. The self-assembly of the rod-coil molecule is driven by the bulk concentration, and there exists a critical bulk concentration beyond which the rod-coil molecule self-assembled into ordered lamellar structures in the slit, otherwise it is in a disordered state. By monitoring the effect of the interaction (epsilon(*)(TT)) of molecular tail on the self-assembly, we found that in the nanoslit of H=13 sigma, it is at epsilon(*)(TT)=8 rather than epsilon(*)(TT)=10 or epsilon(*)(TT)=12 that the minimal critical bulk concentration occurs. It may be because the strong tail-tail interaction leads to aggregation of the copolymer molecules in bulk phase, and the resulting supramolecular structures are fairly difficult to enter the slit due to the depletion effect. At a fixed slit, the structural evolution of the self-assembled film with the bulk concentration is observed, including trilayer and five-layer lamellar structures, smectic-A, smectic-C, and a mixture of smectic-A and smectic-C liquid crystal phases and so on. We found that the critical bulk concentration, corresponding to the disordered-ordered phase transition, greatly depends on the separation between two walls, and it changes periodically with the increase of the slit width. In addition, it is also found that the molecular flexibility is one of key factors determining the self-assembled structure in the slit, and the critical bulk density increases with the molecular flexibility.
机译:棒-线圈二嵌段共聚物是包含刚性棒和柔性部分的特殊分子。我们目前使用混合密度泛函理论对纳米狭缝中棒-螺旋共聚物的自组装进行系统的研究。棒-螺旋分子的自组装受堆积浓度的驱动,并且存在临界堆积密度,超过该临界堆积浓度,棒-螺旋分子在缝隙中自组装成有序的层状结构,否则处于无序状态。通过监测分子尾部相互作用(ε(*)(TT))对自组装的影响,我们发现在H = 13 sigma的纳米狭缝中,它在epsilon(*)(TT)= 8处相当比epsilon(*)(TT)= 10或epsilon(*)(TT)= 12会出现最小临界体积浓度。这可能是因为强的尾巴相互作用导致本体相中的共聚物分子聚集,并且由于耗尽效应,所得的超分子结构相当难以进入狭缝。在固定的缝隙处,观察到自组装膜的结构浓度随体积的变化,包括三层和五层的层状结构,近晶A,近晶C以及近晶A和近晶C液体的混合物晶相等。我们发现,与无序有序相变相对应的临界体积浓度在很大程度上取决于两壁之间的间隔,并且随着缝隙宽度的增加而周期性地变化。另外,还发现分子柔性是决定狭缝中自组装结构的关键因素之一,并且临界堆积密度随分子柔性而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号