首页> 外文期刊>The Journal of Chemical Physics >An analytical approach to computing biomolecular electrostatic potential. II. Validation and applications
【24h】

An analytical approach to computing biomolecular electrostatic potential. II. Validation and applications

机译:一种计算生物分子静电势的分析方法。二。验证与申请

获取原文
获取原文并翻译 | 示例
           

摘要

An ability to efficiently compute the electrostatic potential produced by molecular charge distributions under realistic solvation conditions is essential for a variety of applications. Here, the simple closed-form analytical approximation to the Poisson equation rigorously derived in Part I for idealized spherical geometry is tested on realistic shapes. The effects of mobile ions are included at the Debye-Huckel level. The accuracy of the resulting closed-form expressions for electrostatic potential is assessed through comparisons with numerical Poisson-Boltzmann (NPB) reference solutions on a test set of 580 representative biomolecular structures under typical conditions of aqueous solvation. For each structure, the deviation from the reference is computed for a large number of test points placed near the dielectric boundary (molecular surface). The accuracy of the approximation, averaged over all test points in each structure, is within 0.6 kcal/mol/vertical bar e vertical bar similar to kT per unit charge for all structures in the test set. For 91.5% of the individual test points, the deviation from the NPB potential is within 0.6 kcal/mol/vertical bar e vertical bar. The deviations from the reference decrease with increasing distance from the dielectric boundary: The approximation is asymptotically exact far away from the source charges. Deviation of the overall shape of a structure from ideal spherical does not, by itself, appear to necessitate decreased accuracy of the approximation. The largest deviations from the NPB reference are found inside very deep and narrow indentations that occur on the dielectric boundaries of some structures. The dimensions of these pockets of locally highly negative curvature are comparable to the size of a water molecule; the applicability of a continuum dielectric models in these regions is discussed. The maximum deviations from the NPB are reduced substantially when the boundary is smoothed by using a larger probe radius (3 angstrom) to generate the molecular surface. A detailed accuracy analysis is presented for several proteins of various shapes, including lysozyme whose surface features a functionally relevant region of negative curvature. The proposed analytical model is computationally inexpensive; this strength of the approach is demonstrated by computing and analyzing the electrostatic potential generated by a full capsid of the tobacco ring spot virus at atomic resolution (500 000 atoms). An analysis of the electrostatic potential of the inner surface of the capsid reveals what might be a RNA binding pocket. These results are generated with the modest computational power of a desktop personal computer. (c) 2008 American Institute of Physics.
机译:在实际的溶剂化条件下,有效计算分子电荷分布产生的静电势的能力对于各种应用至关重要。在这里,对逼真的形状测试了对理想化的球形几何体严格地在第一部分中严格导出的泊松方程的简单封闭形式的解析近似。流动离子的影响包括在Debye-Huckel级别。通过在典型的水溶条件下,在580个代表性生物分子结构的测试装置上与数值泊松-玻耳兹曼(NPB)参考溶液进行比较,评估所得的封闭形式静电势表达式的准确性。对于每种结构,将针对放置在介电边界(分子表面)附近的大量测试点计算与参考的偏差。在每个结构的所有测试点上平均的近似精度在0.6 kcal / mol /垂直条和垂直条以内,类似于测试集中所有结构每单位电荷的kT。对于91.5%的单个测试点,与NPB电位的偏差在0.6 kcal / mol /垂直条和垂直条之间。与参考的偏差随与介电边界的距离增加而减小:近似渐近精确地远离源电荷。结构的整体形状与理想球形的偏差本身似乎并不需要降低近似精度。与NPB参考的最大偏差出现在某些结构的介电边界上出现的非常深而狭窄的凹痕内。这些局部高度负曲率的凹穴的尺寸可与水分子的尺寸相媲美。讨论了连续介质模型在这些区域中的适用性。当通过使用较大的探针半径(3埃)生成分子表面使边界平滑时,与NPB的最大偏差将大大降低。详细的准确性分析提供了几种不同形状的蛋白质,包括溶菌酶,其表面具有负曲率的功能相关区域。所提出的分析模型在计算上不昂贵;通过以原子分辨率(500 000个原子)计算和分析完整的烟草环斑病毒衣壳产生的静电势,证明了这种方法的优势。衣壳内表面的静电势分析表明,可能是RNA结合袋。这些结果是通过台式个人计算机的适度计算能力生成的。 (c)2008年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号