...
首页> 外文期刊>The Journal of Chemical Physics >Topological analysis of electron densities from Kohn-Sham and subsystem density functional theory
【24h】

Topological analysis of electron densities from Kohn-Sham and subsystem density functional theory

机译:基于Kohn-Sham和子系统密度泛函理论的电子密度拓扑分析

获取原文
获取原文并翻译 | 示例

摘要

In this study, we compare the electron densities for a set of hydrogen-bonded complexes obtained with either conventional Kohn-Sham density functional theory (DFT) calculations or with the frozen-density embedding (FDE) method, which is a subsystem approach to DFT. For a detailed analysis of the differences between these two methods, we compare the topology of the electron densities obtained from Kohn-Sham DFT and FDE in terms of deformation densities, bond critical points, and the negative Laplacian of the electron density. Different kinetic-energy functionals as needed for the frozen-density embedding method are tested and compared to a purely electrostatic embedding. It is shown that FDE is able to reproduce the characteristics of the density in the bonding region even in systems such as the F-H-F- molecule, which contains one of the strongest hydrogen bonds. Basis functions on the frozen system are usually required to accurately reproduce the electron densities of supermolecular calculations. However, it is shown here that it is in general sufficient to provide just a few basis functions in the boundary region between the two subsystems so that the use of the full supermolecular basis set can be avoided. It also turns out that electron-density deformations upon bonding predicted by FDE lack directionality with currently available functionals for the nonadditive kinetic-energy contribution. (C) 2008 American Institute of Physics.
机译:在这项研究中,我们比较了通过传统的Kohn-Sham密度泛函理论(DFT)计算或冷冻密度嵌入(FDE)方法获得的一组氢键配合物的电子密度,这是DFT的子系统方法。为了详细分析这两种方法之间的差异,我们比较了从Kohn-Sham DFT和FDE获得的电子密度的拓扑结构,这些拓扑结构包括变形密度,结合临界点和负电子密度的拉普拉斯算子。测试了冻结密度嵌入方法所需的不同动能功能,并将其与纯静电嵌入进行了比较。结果表明,即使在含有最强氢键之一的F-H-F-分子等系统中,FDE仍能够再现键合区域的密度特征。通常需要使用冻结系统上的基函数来准确地重现超分子计算的电子密度。然而,在此示出,通常仅在两个子系统之间的边界区域中提供几个基本函数就足够了,从而可以避免使用完整的超分子基础集。结果还表明,由FDE预测的键合时的电子密度变形缺乏方向性,而该方向性与当前可用于非加成动能贡献的功能相关。 (C)2008美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号