...
首页> 外文期刊>The Journal of Chemical Physics >Quantum-state resolved reactive scattering at the gas-liquid interface: F plus squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J)
【24h】

Quantum-state resolved reactive scattering at the gas-liquid interface: F plus squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J)

机译:气-液界面处的量子态解析反应散射:F和角鲨烷(C30H62)动力学,通过新生HF(v,J)的高分辨率红外吸收

获取原文
获取原文并翻译 | 示例
           

摘要

Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic beam of F atoms [E-com=0.7(3) kcal/mol] with a continuously refreshed liquid hydrocarbon (squalane) surface under high vacuum conditions. Absolute HF(v,J) product densities are determined by infrared laser absorption spectroscopy, with velocity distributions along the probe axis derived from high resolution Dopplerimetry. Nascent HF(v <= 3) products are formed in a highly nonequilibrium (inverted) vibrational distribution [< E-vib >=13.2(2) kcal/mol], reflecting insufficient time for complete thermal accommodation with the surface prior to desorption. Colder, but still non-Boltzmann, rotational state populations [< E-rot >=1.0(1) kcal/mol] indicate that some fraction of molecules directly scatter into the gas phase without rotationally equilibrating with the surface. Nascent HF also recoils from the liquid surface with excess translational energy, resulting in Doppler broadened linewidths that increase systematically with internal HF excitation. The data are consistent with microscopic branching in HF-surface dynamics following the reactive event, with (i) a direct reactive scattering fraction of newly formed product molecules leaving the surface promptly and (ii) a trapping desorption fraction that accommodates rotationally (though still not vibrationally) with the bulk liquid. Comparison with analogous gas phase F+hydrocarbon processes reveals that the liquid acts as a partial "heat sink" for vibrational energy flow on the time scale of the chemical reaction event.
机译:通过在高真空条件下将F原子的超音速束[E-com = 0.7(3)kcal / mol]与连续刷新的液态烃(角鲨烷)表面碰撞,研究了气-液界面处的放热化学反应动力学。 HF(v,J)绝对产物密度是通过红外激光吸收光谱法确定的,沿探针轴的速度分布是由高分辨率多普勒仪得出的。初生的HF(v <= 3)产品是在高度不平衡(倒置)的振动分布[ = 13.2(2)kcal / mol]中形成的,这反映了在解吸之前与表面完全热适应的时间不足。较冷但仍然不是玻耳兹曼的旋转态种群[ = 1.0(1)kcal / mol]表明,部分分子直接分散到气相中而没有与表面旋转平衡。新生的HF还会以过量的平移能量从液体表面后退,导致多普勒加宽的线宽随着内部HF激发而系统地增加。该数据与反应事件之后HF表面动力学中的微观分支相一致,(i)新形成的产物分子的直接反应性散射部分迅速离开表面,并且(ii)能够旋转适应的捕获解吸部分(尽管仍然没有)振动)。与类似气相F +烃工艺的比较表明,液体在化学反应事件的时间尺度上充当振动能量流的部分“散热器”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号