首页> 外文期刊>The Journal of Chemical Physics >Effect of stagnant-layer conductivity on the electric permittivity of concentrated colloidal suspensions
【24h】

Effect of stagnant-layer conductivity on the electric permittivity of concentrated colloidal suspensions

机译:停滞层电导率对浓缩胶体悬浮液介电常数的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A long-lasting experience in the electrokinetics of suspensions has shown that the so-called standard model may be partly in error in explaining experimental data. In this model, the stagnant layer is considered nonconducting (K-sigma i=0), and only the diffuse layer contributes to the total surface conductivity (K-sigma=K-sigma d). In the present work, the authors analyze the consequences of assuming a nonzero stagnant layer conductivity on the permittivity of concentrated suspensions. Using a cell model to account for the particle-particle interactions, and a well established ion adsorption isotherm on the inner region of the double layer, the authors find the frequency-dependent electric permittivity of suspensions of spherical particles with volume fractions of solids up to above 40%. It is demonstrated that the addition of K-sigma i significantly increases the contributions of the double layer to the polarization of the suspension: the alpha or concentration polarization at low (kilohertz) frequencies, and the Maxwell-Wagner-O'Konski (associated with conductivity mismatch between particle and medium) one at intermediate (megahertz) frequencies. While checking for the possibility that the results obtained in conditions of K-sigma i not equal 0 could be reproduced assuming K-sigma i=0 and raising K-sigma d to reach identical total K-sigma, it is found that this is approximately possible in the calculation of the permittivity. Interestingly, this does not occur in the case of electrophoretic mobility, where the situations K-sigma=K-sigma d and K-sigma=K-sigma d+K-sigma i (for equal K-sigma) can be distinguished for all frequencies. This points to the importance of using more than one electrokinetic technique to properly evaluate not only the zeta potential but other transport properties of concentrated suspensions, particularly K-sigma i. (c) 2007 American Institute of Physics.
机译:悬浮液电动学的长期经验表明,所谓的标准模型在解释实验数据时可能会出现部分错误。在此模型中,停滞层被视为不导电(K-sigma i = 0),只有扩散层对总表面电导率有所贡献(K-sigma = K-sigma d)。在目前的工作中,作者分析了假设非零停滞层电导率对浓缩悬浮液介电常数的影响。利用细胞模型解释颗粒-颗粒之间的相互作用,并在双层的内部区域建立起良好的离子吸附等温线,作者发现了球形颗粒悬浮液的频率依赖性电容率,固体的体积分数高达高于40%。事实证明,添加K-sigma i可显着增加双层对悬浮液极化的贡献:低频(千赫兹)下的α极化或浓度极化,以及Maxwell-Wagner-O'Konski(与粒子与介质之间的电导率不匹配)处于中(兆赫)频率。在检查是否有可能假设K-sigma i = 0并重现K-sigma d达到相同的总K-sigma的情况下可以再现在K-sigma i不等于0的条件下获得的结果的可能性时,发现这大约等于计算介电常数是可能的。有趣的是,在电泳迁移率的情况下不会发生这种情况,在这种情况下,可以区分所有情况下的情况K-sigma = K-sigma d和K-sigma = K-sigma d + K-sigma i(对于相等的K-sigma)频率。这表明使用不止一种电动技术来不仅正确评估zeta电位,而且还应正确评估浓缩悬浮液(尤其是K-sigma i)的其他传输性能的重要性。 (c)2007年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号