...
首页> 外文期刊>The Journal of Chemical Physics >Numerical verification of the generalized Crooks nonequilibrium work theorem for non-Hamiltonian molecular dynamics simulations
【24h】

Numerical verification of the generalized Crooks nonequilibrium work theorem for non-Hamiltonian molecular dynamics simulations

机译:非哈密尔顿分子动力学模拟的广义Crooks非平衡功定理的数值验证

获取原文
获取原文并翻译 | 示例
           

摘要

The generalized Crooks theorem (GCT) for deterministic non-Hamiltonian molecular dynamics simulations [Phys. Rev. E 75, 050101 (2007)] connects the probabilities of nonequilibrium realizations switching the system between two thermodynamic states, to the partition functions of these states. In comparison to the "classical" Crooks nonequilibrium work theorem [J. Stat. Phys. 90, 1481 (1998)], which deals with realizations involving only mechanical work, the GCT also accounts for additional work resulting from changes of the intensive and extensive thermodynamic variables of the system. In this article we present a numerical verification of the GCT using a Lennard-Jones fluid model where two particles are subject to a time-dependent external potential. Moreover, in order to switch the system between different thermodynamic states, the temperature and the pressure (or volume), which are controlled through the Martyna-Tobias-Klein equations of motion [J. Chem. Phys. 101, 4177 (1994)], are also varied externally. The free energy difference between states characterized by different distances of the target particles is evaluated using both a standard methodology (pair radial distribution functions) and the GCT. In order to exploit the various options provided by the GCT approach, i.e., the possibility of temperature/pressure/volume changes during the realizations, the free energy difference is recovered via arbitrary thermodynamic cycles. In all tests, the GCT is quantitatively verified. (C) 2007 American Institute of Physics.
机译:用于确定性非哈密顿分子动力学模拟的广义Crooks定理(GCT)。 E 75,050101(2007)]将将系统在两个热力学状态之间切换的非平衡实现的可能性与这些状态的分配函数联系起来。与“古典”的克鲁克斯非平衡功定理相比[J。统计物理90,1481(1998)],其中涉及仅涉及机械功的实现,GCT还考虑了由于系统密集和广泛的热力学变量的变化而导致的额外功。在本文中,我们使用Lennard-Jones流体模型对GCT进行了数值验证,其中两个粒子受到时间相关的外部电势的影响。此外,为了在不同的热力学状态之间切换系统,温度和压力(或体积)是通过Martyna-Tobias-Klein运动方程来控制的[J.化学物理101,4177(1994)],在外部也有所不同。使用标准方法(成对径向分布函数)和GCT来评估以目标粒子的距离不同为特征的状态之间的自由能差。为了利用GCT方法提供的各种选择,即在实现过程中温度/压力/体积变化的可能性,可通过任意热力学循环来恢复自由能差。在所有测试中,GCT均经过了定量验证。 (C)2007美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号