首页> 外文期刊>The Journal of Chemical Physics >New Raman method for aqueous solutions: xi-function dispersion evidence for strong F--water H-bonds in aqueous CsF and KF solutions
【24h】

New Raman method for aqueous solutions: xi-function dispersion evidence for strong F--water H-bonds in aqueous CsF and KF solutions

机译:水溶液的新拉曼方法:XI函数分散证明CsF和KF水溶液中具有强F-水H键

获取原文
获取原文并翻译 | 示例
           

摘要

The Raman xi-function dispersion method recently elucidated for the strong H-bond breaker, ClO4-, in water [G. E. Walrafen, J. Chem. Phys. 122, 094510 (2005)] is extended to the strongly H-bond forming ion, F-. Measuring the xi function is analogous to measuring Delta G from the thermodynamic activity of the water, a(H2)O, as the stoichiometric mol fraction of the water in the solution decreases due to addition of an electrolyte or nonelectrolyte. xi is the derivative of the OH-stretching part of the Gibbs free energy with respect to the water mol fraction; xi(omega)equivalent to-RT[partial derivative ln(I-omega/I-REF)/partial derivative X-2](T,P). I is the Raman intensity at omega (omega=Raman shift in cm(-1)); I-REF, that at an arbitrary reference omega; and, X-2 is the water mol fraction (X-1=CsF or KF mol fraction). ln(I-omega/I-REF) was found to be linear in X-2 for the complete range of OH-stretching omega's, with correlation coefficients as large as 0.999 96. Linearity of ln(I-omega/I-REF) versus X-2 is an experimental fact for all omega's throughout the spontaneous Raman OH-stretching contour; this fact cannot be negated by relative contributions of ultrafast/fast, homogeneous/inhomogeneous processes which may underlie this linearity. Linearity in ln(I-omega/I-REF) versus 1/T, or in ln(I-omega/I-REF) versus P, was also observed for the Raman H-bond energy Delta E and pair volume Delta V dispersions, respectively. A low-frequency maximum (MAX) and a high-frequency minimum (MIN) were observed in the xi function dispersion curve. Delta xi=xi(MIN)-xi(MAX) values of -7000 +/- 800-cal/mol H2O for CsF, and the experimentally equal Delta xi=-6400 +/- 1000-cal/mol H2O for KF, were obtained. These Delta xi's are opposite in sign but have nearly the same absolute magnitude as the Delta xi value for NaClO4 in water; Delta xi=+8050 +/- 100-cal/mol H2O. A positive Delta xi corresponds to a water-water H-bond breaker; a negative Delta xi to a H-bond former; specifically, a F--water H-bond former, in the instant case. NaClO4 breaks water-water H-bonds and also gives rise to weak, long (3.0-3.3 A), severely bent (approximate to 140 degrees), high-energy, ClO4--water interactions. Fluoride ion scavenges the extremely weak or non-hydrogen-bonded OH groups, thus forming strong, short, linear, low-energy, H-bonds between F- and water. The strength of the F--water H-bond is evident from the fact that the OH-stretching xi-function minimum is centered approximate to 200-300 cm(-1) below that of ice. The diagnostic feature of the Raman spectrum from F- in water is an intense, long, low-frequency OH-stretching tail extending 800 cm(-1) or more below the 3300-cm(-1) peak. A similar intense, long, low-frequency Raman tail is produced by the OH- ion, which is known to H-bond very strongly when protons from water are donated to its oxygen atom.
机译:拉曼xi函数分散法最近阐明了水中的强H键破坏剂ClO4 [G. E.Walrafen,J.Chem。物理[J.Biol.Chem.122,094510(2005)]扩展到形成强H键的离子F-。测量xi函数类似于从水中的a(H2)O的热力学活性中测量Delta G,因为溶液中水的化学计量摩尔分数由于添加了电解质或非电解质而降低了。 xi是吉布斯自由能的OH伸展部分相对于水摩尔分数的导数; xi(ω)等同于-RT [偏导数ln(I-ω/ I-REF)/偏导数X-2](T,P)。 I是Ω处的拉曼强度(Ω=以cm(-1)为单位的拉曼位移); I-REF,指任意参考Ω; X-2是水的摩尔分数(X-1 = CsF或KF的摩尔分数)。发现ln(I-omega / I-REF)在整个OH拉伸ω范围内在X-2中呈线性,相关系数高达0.99996。ln(I-omega / I-REF)的线性与X-2相比,这是所有自发拉曼OH拉伸轮廓中所有欧米茄的实验事实;这个事实不能被超快速/快速,均质/不均质过程的相对贡献所否定,这可能是这种线性的基础。对于拉曼氢键能量Delta E和对体积Delta V色散,还观察到ln(I-omega / I-REF)与1 / T的线性关系或ln(I-omega / I-REF)与P的线性关系, 分别。在xi函数色散曲线中观察到了低频最大值(MAX)和高频最小值(MIN)。 CsF的Delta xi = xi(MIN)-xi(MAX)值为-7000 +/- 800-cal / mol H2O,而KF的实验上相等的Delta xi = -6400 +/- 1000-cal / mol H2O为获得。这些δxi符号相反,但绝对值与水中NaClO4的δxi值几乎相同; Δxi= + 8050 +/- 100cal / mol H 2O。正Delta xi对应于水-水H键断路器;负δ轴相对于H键形成子;具体而言,在本例中为F水氢键形成剂。 NaClO4会破坏水与水的H键,并且还会导致弱的,长的(3.0-3.3 A),严重弯曲的(大约140度),高能的ClO4-水相互作用。氟离子清除了极弱的或无氢键的OH基团,从而在F和水之间形成强,短,线性,低能的H键。 F-水H键的强度从以下事实可以明显看出,即OH拉伸xi函数最小值的中心位于比冰低的位置200-300 cm(-1)附近。来自水中F-的拉曼光谱的诊断特征是在3300-cm(-1)峰以下延伸800 cm(-1)或更多的强烈,长而低频的OH拉伸尾巴。 OH离子会产生类似的强烈,长而低频的拉曼尾巴,当水的质子捐赠给其氧原子时,OH离子会非常强烈地形成H键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号