首页> 外文期刊>The Journal of Chemical Physics >Single molecule conductivity: The role of junction-orbital degeneracy in the artificially high currents predicted by ab initio approaches
【24h】

Single molecule conductivity: The role of junction-orbital degeneracy in the artificially high currents predicted by ab initio approaches

机译:单分子电导率:结轨道简并性在从头算方法预测的人工高电流中的作用

获取原文
获取原文并翻译 | 示例
       

摘要

A priori evaluations, using Hartree-Fock self-consistent-field (SCF) theory or density-functional theory (DFT), of the current passing between two electrodes through a single bridging molecule result in predicted conductivities that may be up to one to two orders of magnitude larger than observed ones. We demonstrate that this is, in part, often due to the improper application of the computational methods. Conductivity is shown to arise from tunneling between junction states of the electrodes through the molecule; these states are inherently either quasi two-fold or four-fold degenerate and always comprise the (highest occupied molecular orbital) HOMO band at the Fermi energy of the system. Frequently, in previous cluster based molecular conduction calculations, closed-shell SCF or Kohn-Sham DFT methods have been applied to systems that we demonstrate to be intrinsically open shell in nature. Such calculations are shown to induce artificial HOMO-LUMO (LUMO-lowest unoccupied molecular orbital) band splittings that Landauer-based formalisms for steady-state conduction interpret as arising from extremely rapid through-molecule tunneling at the Fermi energy, hence, overestimating the low-voltage conductivity. It is demonstrated that these shortcomings can be eliminated, dramatically reducing calculated current magnitudes, through the alternate use of electronic-structure calculations based on the spin-restricted open-shell formalism and related multiconfigurational SCF of DFT approaches. Further, we demonstrate that most anomalies arising in DFT implementations arise through the use of hybrid density functionals such as B3LYP. While the enhanced band-gap properties of these functionals have made them the defacto standard in molecular conductivity calculations, we demonstrate that it also makes them particularly susceptible to open-shell anomalies. (C) 2004 American Institute of Physics.
机译:使用Hartree-Fock自洽场(SCF)理论或密度泛函理论(DFT)对通过单个桥接分子的两个电极之间的电流进行先验评估得出的预测电导率可能高达一到二比观察到的大几个数量级我们证明这部分是由于计算方法的不正确应用。已显示出电导率是由于穿过分子的电极的结合态之间的隧穿而引起的。这些状态本质上是准简并的两倍或四倍简并始终包含系统费米能的(最高占据分子轨道)HOMO能带。通常,在以前的基于簇的分子传导计算中,闭壳SCF或Kohn-Sham DFT方法已应用于我们证明本质上本质上是开壳的系统。这样的计算表明会诱发人工HOMO-LUMO(LUMO最低的未占据分子轨道)能带分裂,基于Landauer的稳态传导形式学解释为是由于费米能量下极快速的分子穿隧引起的,因此高估了低能电压电导率。事实证明,通过交替使用基于自旋受限的开壳形式和DFT方法的相关多配置SCF的电子结构计算,可以消除这些缺点,从而显着降低了计算的电流幅度。此外,我们证明了DFT实现中产生的大多数异常是通过使用混合密度函数(例如B3LYP)引起的。虽然这些功能的增强的带隙特性使它们成为分子电导率计算中的事实上的标准,但我们证明,这也使它们特别容易受到开壳异常的影响。 (C)2004年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号