...
首页> 外文期刊>The Journal of Chemical Physics >Irreducible Brillouin conditions and contracted Schrodinger equations for n-electron systems. III. Systems of noninteracting electrons
【24h】

Irreducible Brillouin conditions and contracted Schrodinger equations for n-electron systems. III. Systems of noninteracting electrons

机译:n电子系统的不可约布里渊条件和收缩Schrodinger方程。三,非相互作用电子系统

获取原文
获取原文并翻译 | 示例
           

摘要

We analyze the structure and the solutions of the irreducible k-particle Brillouin conditions (IBCk) and the irreducible contracted Schrodinger equations (ICSEk) for an n-electron system without electron interaction. This exercise is very instructive in that it gives one both the perspective and the strategies to be followed in applying the IBC and ICSE to physically realistic systems with electron interaction. The IBC1 leads to a Liouville equation for the one-particle density matrix gamma(1)=gamma, consistent with our earlier analysis that the IBC1 holds both for a pure and an ensemble state. The IBC1 or the ICSE1 must be solved subject to the constraints imposed by the n-representability condition, which is particularly simple for gamma. For a closed-shell state gamma is idempotent, i.e., all natural spin orbitals (NSO's) have occupation numbers 0 or 1, and all cumulants lambda(k) with kgreater than or equal to2 vanish. For open-shell states there are NSO's with fractional occupation number, and at the same time nonvanishing elements of lambda(2), which are related to spin and symmetry coupling. It is often useful to describe an open-shell state by a totally symmetric ensemble state. If one wants to treat a one-particle perturbation by means of perturbation theory, this mainly as a run-up for the study of a two-particle perturbation, one is faced with the problem that the perturbation expansion of the Liouville equation gives information only on the nondiagonal elements (in a basis of the unperturbed states) of gamma. There are essentially three possibilities to construct the diagonal elements of gamma: (i) to consider the perturbation expansion of the characteristic polynomial of gamma, especially the idempotency for closed-shell states, (ii) to rely on the ICSE1, which (at variance with the IBC1) also gives information on the diagonal elements, though not in a very efficient manner, and (iii) to formulate the perturbation theory in terms of a unitary transformation in Fock space. The latter is particularly powerful, especially, when one wishes to study realistic Hamiltonians with a two-body interaction. (C) 2004 American Institute of Physics. [References: 41]
机译:我们分析了无电子相互作用的n电子系统的不可约k粒子布里渊条件(IBCk)和不可约收缩Schrodinger方程(ICSEk)的结构和解。这项练习非常有启发性,因为它为将IBC和ICSE应用于具有电子相互作用的物理现实系统提供了视角和策略。 IBC1导致单粒子密度矩阵gamma(1)= gamma的Liouville方程,这与我们之前的分析一致,即IBC1既适用于纯态又适用于整体态。必须根据n可表示性条件施加的约束来求解IBC1或ICSE1,这对于伽玛来说尤其简单。对于闭壳状态,伽马是幂等的,即所有自然自旋轨道(NSO)的占据数为0或1,并且所有kgreater大于或等于2的累积量lambda(k)都消失。对于开壳状态,存在具有占位分数的NSO,同时具有与自旋和对称耦合有关的lambda(2)不变元素。用完全对称的集合状态描述开壳状态通常是有用的。如果要通过扰动理论来处理单粒子扰动,这主要是作为研究两粒子扰动的基础,那么人们将面临一个问题,即,Liouville方程的扰动展开只能给出信息在γ的非对角元素上(以无扰动状态为基础)。构造gamma的对角元素基本上有三种可能性:(i)考虑gamma的特征多项式的摄动展开,尤其是闭壳态的幂等性,(ii)依赖ICSE1,它(以方差IBC1)还提供了对角元素的信息,尽管不是很有效,并且(iii)用Fock空间中的transformation变换来表达微扰理论。后者特别强大,特别是当人们希望通过两体相互作用研究现实的哈密顿量时。 (C)2004年美国物理研究所。 [参考:41]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号