首页> 外文期刊>The Journal of Chemical Physics >The fluid-solid equilibrium for a charged hard sphere model revisited
【24h】

The fluid-solid equilibrium for a charged hard sphere model revisited

机译:重新讨论带电硬球模型的流固平衡

获取原文
获取原文并翻译 | 示例
           

摘要

The global phase diagram of a system of charged hard spheres, composed of positive and negative ions of the same size, is obtained by means of computer simulations. Thermodynamic integration and Einstein crystal calculations are used to determine the free energies of the different possible solid structures. In this way, the fluid-solid and solid-solid phase transitions are located. Gibbs-Duhem integration is used to trace the full coexistence curves between the different phases involved. Three different solid structures are found to be stable for the model considered; namely, a cesium chloride structure (CsCl), a substitutionally disordered close packed structure which is faced centered cubic (fcc), and a tetragonal ordered structure with a fcc arrangement of atoms if the charge of the ions is not considered. At high temperatures, freezing leads to the substitutionally disordered close packed structure. This solid structure undergoes an order-disorder transition at low temperatures transforming into the tetragonal solid. At low temperatures freezing leads to the cesium chloride structure (CsCl) which undergoes a phase transition to the tetragonal structure at high pressures. The tetragonal solid is the stable solid phase at low temperatures and high densities. In a narrow range of temperatures direct coexistence between the fluid and the tetragonal solid is observed. Three triple points are found for the model considered. The usual vapor-liquid-CsCl solid triple point occurs at T-*=0.0225. In addition, a fluid-fcc disordered-tetragonal triple point is located at T-*=0.245 and, finally, a fluid-CsCl-tetragonal triple point appears at T-*=0.234. The results presented here can be used to test the performance of the different theoretical treatments of freezing available in the literature. (C) 2003 American Institute of Physics. [References: 47]
机译:通过计算机模拟获得由相同大小的正负离子组成的带电硬球系统的整体相图。热力学积分和爱因斯坦晶体计算用于确定不同可能的固体结构的自由能。以这种方式,定位了流体-固相和固-固相变。 Gibbs-Duhem积分用于跟踪所涉及的不同阶段之间的完整共存曲线。对于所考虑的模型,发现三种不同的实体结构是稳定的。即,如果不考虑离子的电荷,则为氯化铯结构(CsCl),面对中心立方(fcc)的取代无序的紧密堆积结构和具有原子的fcc排列的四方有序结构。在高温下,冷冻导致取代无序的紧密堆积结构。该固体结构在低温下经历有序-无序转变,转变为四方固体。在低温下冻结会导致氯化铯结构(CsCl),该结构在高压下会发生相变,变成四方结构。四方固体在低温和高密度下是稳定的固相。在狭窄的温度范围内,观察到流体与四方固体之间直接共存。对于所考虑的模型,找到了三个三点。通常的气-液-CsCl固体三相点在T-* = 0.0225处发生。此外,流体-fcc无序四边形三点位于T-* = 0.245,最后,流体-CsCl-四边形三点出现在T-* = 0.234。此处提供的结果可用于测试文献中可用的不同理论冷冻处理方法的性能。 (C)2003美国物理研究所。 [参考:47]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号