...
首页> 外文期刊>The Journal of Chemical Physics >Using the finite-difference time-domain pulse propagation method to simulate time-resolved THz experiments
【24h】

Using the finite-difference time-domain pulse propagation method to simulate time-resolved THz experiments

机译:使用时域有限差分脉冲传播方法模拟时间分辨THz实验

获取原文
获取原文并翻译 | 示例
           

摘要

The finite.difference time-domain (FDTD) method has been applied to time-resolved THz spectroscopy (TRTS) experiments. Time-resolved THz spectroscopy utilizes an optical pump pulse to excite the sample, followed by a far-infrared (FIR) probe pulse with frequency components that span from 10 to 100 cm-l. The subpicosecond evolution of the FIR spectrum is obtained as a function of time after the visible photoexcitation event. Significant challenges arise in interpreting these experimental results due to the very different frequencies of the pump and probe pulses. Therefore, it is essential to simu~ate the experiment. The method described entails numerically propagating both the THz probe pulse and the visible pump pulse simultaneously, keeping track of the transiently induced polarization from absorption of.the visible pulse. Group velocity mismatch between the visible and THz pulse and a transiently changing response function are completely accounted for in the calculation. Furthermore, a spatially varying polarization can be included to account for a nonuniform excited region of the saihple under investigation. The response function of the material is described as a multimode Brownian oscillator that can describe dispersive media in a very general sense. Iq particular, the overdamped, underdamped, and critically damped cases are all included, as well as special cases such as a Debyeor D~de response. As a specific example, we present results of modeling a TRTS experiment of photoex~itation of..adye in solution,namely,2,11,20,29-tetra-tert-butyl-2,3-napthalocyanine, dissolved in toluene. We carry out a nonlinear least squares fit of a parameterized model to the measured data to show that the FDTD- TRrS method is able to accurately reproduce the features observed in the measured data set.
机译:时域有限差分(FDTD)方法已应用于时间分辨THz光谱(TRTS)实验。时间分辨THz光谱法利用光泵浦脉冲激发样品,然后利用频率范围从10到100 cm-1的远红外(FIR)探针脉冲。在可见光激发事件之后,获得了FIR谱的亚皮秒级演变,它是时间的函数。由于泵浦脉冲和探测脉冲的频率非常不同,因此在解释这些实验结果时会遇到重大挑战。因此,模拟实验至关重要。所描述的方法需要同时在数字上传播THz探测脉冲和可见泵浦脉冲,同时跟踪可见光脉冲吸收引起的瞬态感应极化。计算中完全考虑了可见光和太赫兹脉冲之间的群速度失配以及瞬态变化的响应函数。此外,可以包括空间变化的极化,以解决所研究的天线的不均匀激发区域。材料的响应函数被描述为多模布朗振荡器,可以从非常广义的角度描述色散介质。特别是,包括过阻尼,欠阻尼和临界阻尼的情况,以及特例,例如Debyeor D_de响应。作为一个具体的例子,我们给出模拟TRTS实验的结果,该TREST实验是对溶于甲苯的2,11,20,29-四叔丁基-2,3-萘基花青溶液中的染料进行光激发的模拟。我们对测量的数据进行了参数化模型的非线性最小二乘拟合,以表明FDTD-TRrS方法能够准确地再现在测量的数据集中观察到的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号