首页> 外文期刊>The Journal of Chemical Physics >Molecular modeling of electron traps in polymer insulators: Chemical defectsand impurities
【24h】

Molecular modeling of electron traps in polymer insulators: Chemical defectsand impurities

机译:聚合物绝缘子中电子陷阱的分子模型:化学缺陷和杂质

获取原文
获取原文并翻译 | 示例
           

摘要

The presence of space charge in the polymeric insulation of high-voltage cables is thought to be correlated with electric breakdown. However, a direct link between molecular properties, space charge formation and eventual breakdown has ~till to be established. It is clear that both physical (e.g., conformational disorder) and chemical defects (e.g., broken bonds and impurities) are present in insulating materials and that both may trap electrons. We have shown that by defining the defect energy in terms of the molecular electron affinity, a relationship is established between the electron trap and the molecular properties of the material. In a recent paper [M.. Meunier and N. Quirke, I. Chem. Phys. 113,369 (2000)] we proposed methods that have made it possible to provide estimates of the energy, number and residence times of electrons ift conformational traps in polyethylene. Typical physical trap energies are of the order of 0.15 eV and all are less than 0.3 eV. In the present paper we focus on the role of chemical defects, where we expect much deeper traps but at very low concentrations. Following the methodology used in our previous paper we have used density-functional theory to calculate trap energies for a set of chemical impurities and additives commonly found in polyethylene used for high-voltage cable insulation. In an extension of our approach we have estimated the effect of neighboring molecul~ on the trap energies of suchdefec;ts. The resulting trap energy-trap density distribution reveals some very deep (> leV) traps presumably implicated in the formation of long-lived space charge in polymeric insulators and consequently to changes in the dielectri~ properties of the material.
机译:高压电缆的聚合物绝缘中空间电荷的存在被认为与电击穿相关。但是,分子性质,空间电荷形成和最终分解之间的直接联系尚待建立。显然在绝缘材料中既存在物理缺陷(例如构象障碍)又存在化学缺陷(例如断裂的键和杂质),并且两者都可能捕获电子。我们已经表明,通过根据分子电子亲和力定义缺陷能,可以在电子陷阱和材料的分子特性之间建立关系。在最近的一篇论文中[M. Meunier和N. Quirke,I。Chem。物理113,369(2000)]我们提出了一些方法,使人们能够估算聚乙烯中电子和构象陷阱的能量,数量和停留时间。典型的物理陷阱能约为0.15 eV,并且都小于0.3 eV。在本文中,我们集中于化学缺陷的作用,我们期望陷阱更深但浓度很低。遵循我们先前论文中使用的方法,我们使用密度泛函理论来计算用于高压电缆绝缘的聚乙烯中常见的一组化学杂质和添加剂的陷阱能。在我们方法的扩展中,我们估计了邻近分子对这种缺陷的陷阱能的影响。所产生的陷阱能阱密度分布揭示了一些非常深的(> leV)陷阱,可能与聚合物绝缘体中长寿命空间电荷的形成有关,并因此导致了材料介电性能的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号