首页> 外文期刊>The Journal of Chemical Physics >Electronic energy density in chemical reaction systems
【24h】

Electronic energy density in chemical reaction systems

机译:化学反应系统中的电子能量密度

获取原文
获取原文并翻译 | 示例
           

摘要

The energy of chemical reaction is visualized in real space using the electronic energy density n_E(r-vector) associated with the electron density n(r-vector).The electronic energy density n_E(r-vector) is decomposed into the kinetic energy density n_T(r-vector),the external potential energy density n_V(r-vector),and the interelectron potential energy density n_W(r-vector).Using the electronic energy density n_E(r-vector) we can pick up any point in a chemical reaction system and find how the electronic energy E is assigned to the selected poing.We can then integrate the electronic energy density n_E(r-vector) in any region R surrounding the point and find out the regional electronic energy E_R to the global E.The kinetic energy density n_T(r-vector) is used to identify the intrinsic shape of the reactants,the electronic transition state,and the reaction products along the course of the chemical reaction coordinate.The intrinsic shape is identified with the electronic interface S that discriminates the region R_D of the electronic drop from the region R_A of the electronic atmosphere in the density distribution of the electron gas.If the R spans the whole space,then the integral gives the total E.The regional electronic energy E_R in tehrmodynamic ensemble is realized in electrochemistry as the intrinsic Volta electric potential O_R and the intrinsic Herring-Nichols work function #PHI#_R.We hacked up first a hydrogen-like atom for which we have analytical exact expressions of the relativistic kinetic energy density n_T_(M) (r-vector) and its nonrelativistic version n_T(r-vector).These expressions are valid for any excited bound states as well as the ground state.Second,we have selected the following five reaction systems and show the figures of the n_T(r-vector) as well as the other energy densities along the intrinsic reaction coordinates:aprotonation reaction to He,addition reactions of HF to C_2H_4 and C_2H_2,hydrogen abstraction reactions of NH_3~(+) from HF and NH_3.Valence electrons possess their unique delocalized drop region remote from those heavily localized drop regions adhered to core electrons.The kinetic energy density n_T(r-vector) and the tension density #tau#(vector)~(S) (r-vector) can vividly demonstrate the formation of the chemical bond.Various basic chemical concepts in these chemical reaction systems have been clearly visualized in real three-dimensional space.
机译:使用与电子密度n(r-vector)相关的电子能量密度n_E(r-vector)在现实空间中可视化化学反应的能量。电子能量密度n_E(r-vector)分解为动能密度n_T(r-vector),外部势能密度n_V(r-vector)和电子间势能密度n_W(r-vector)。使用电子能量密度n_E(r-vector),我们可以在一个化学反应系统,并找到如何将电子能量E分配给选定的位置。然后,我们可以将电子能量密度n_E(r-vector)积分到该点周围的任何区域R中,并找出区域电子能量E_R E.动能密度n_T(r-vector)用于识别反应物的本征形状,电子跃迁状态以及沿着化学反应坐标的反应产物。通过电子界面识别本征形状那在电子气的密度分布中,将电子液滴的区域R_D与电子气氛的区域R_A区别开。如果R跨越整个空间,则积分给出总E。在热力学集合中的区域电子能量E_R为在电化学中以内在伏特电势O_R和内在Herring-Nichols功函数#PHI#_R的形式实现。我们首先破坏了一个类氢原子,对此我们具有相对论动能密度n_T_(M)的解析精确表达式。 r-vector)及其非相对论形式n_T(r-vector)。这些表达式对于任何激发的束缚态以及基态都有效。其次,我们选择了以下五个反应系统并显示n_T(r -向量)以及沿着本征反应坐标的其他能量密度:He的质子化反应,HF与C_2H_4和C_2H_2的加成反应,NH_3〜(+)从HF和C的氢提取反应NH_3。价电子具有其独特的离域液滴区,远离附着在核心电子上的那些重度局部液滴区。动能密度n_T(r-vector)和张力密度#tau#(vector)〜(S)(r-vector )可以生动地证明化学键的形成。这些化学反应系统中的各种基本化学概念已经在真实的三维空间中清晰地显现出来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号