首页> 外文期刊>Polymer: The International Journal for the Science and Technology of Polymers >Novel nanofibrous electrically conductive scaffolds based on poly(ethylene glycol)s-modified polythiophene and poly(epsilon-caprolactone) for tissue engineering applications
【24h】

Novel nanofibrous electrically conductive scaffolds based on poly(ethylene glycol)s-modified polythiophene and poly(epsilon-caprolactone) for tissue engineering applications

机译:基于聚乙二醇改性聚噻吩和聚ε-己内酯的新型纳米纤维导电支架,用于组织工程

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This study explores the fabrication of electrically conductive nanofibers using electrospinning technique from AR(4) miktoarm H-shaped poly(ethylene glycol)s-modified polythiophene [PEGs-b-(PTh)(4)] copolymers and poly(e-caprolactone) (PCL) as scaffolding biomaterials for tissue engineering (TE) applications. For this purpose, two AB(4) miktoarm H-shaped conductive PEG(2000)-b-(PTh)(4) and PEG(6000)-b-(PTh)(4) were synthesized through the multistep process started from diepoxylated PEGs, and subsequently hydrolyzed to PEGs ends-caped tetraol [PEGs(OH)(4)]. Afterward, thiophene-functionalized PEGs AR(4) macromonomers (ThPEGsM) were synthesized through the Steglich esterification of PEGs(OH)(4) with 2-thiopheneacetic acid. The resultant macromonomers were subsequently used in chemical oxidation copolymerization with thiophene monomer to afford AR(4) miktoarm H-shaped conductive polymers. The solutions of the synthesized modified conductive polymers and PCL were electrospun to produce uniform, conductive, and biocompatible nanofibers. The biocompatibilities of the fabricated nanofibers were confirmed by assessing the adhesion, viability and proliferation of human osteoblast MG-63 cells using field emission scanning electron microscopy (FE-SEM) and MTT assay, respectively. According to morphology, electrical conductivity, hydrophilicity, mechanical properties as well as biological studies, the fabricated electrospun nanofibers were found as suitable scaffolds for use in TE applications that require electroactivity. (C) 2016 Elsevier Ltd. All rights reserved.
机译:这项研究探索了使用静电纺丝技术从AR(4)miktoarm H形聚(乙二醇)s改性聚噻吩[PEGs-b-(PTh)(4)]共聚物和聚(ε-己内酯)制备导电纳米纤维的方法(PCL)作为组织工程(TE)应用的支架生物材料。为此,通过从二环氧化开始的多步工艺,合成了两个AB(4)短臂H型导电PEG(2000)-b-(PTh)(4)和PEG(6000)-b-(PTh)(4)。 PEG,然后水解为PEG封端的四醇[PEGs(OH)(4)]。之后,通过将PEGs(OH)(4)与2-噻吩乙酸进行Steglich酯化反应,合成了噻吩官能化的PEG AR(4)大分子单体(ThPEGsM)。所得大分子单体随后用于与噻吩单体进行化学氧化共聚,以提供AR(4)拟臂H型导电聚合物。将合成的改性导电聚合物和PCL的溶液进行电纺丝,以生产均匀,导电和生物相容的纳米纤维。通过分别使用场发射扫描电子显微镜(FE-SEM)和MTT分析评估人成骨细胞MG-63细胞的粘附性,生存力和增殖,可以确认所制备纳米纤维的生物相容性。根据形态,电导率,亲水性,机械性能以及生物学研究,发现制成的电纺纳米纤维是适用于需要电活性的TE应用的支架。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号