...
首页> 外文期刊>Polymer: The International Journal for the Science and Technology of Polymers >Molecular thermodynamic characterization of LCST fluid phase behavior and exploring electrostatic algorithms to compute polymer/solvent solubility parameters in the canonical ensemble
【24h】

Molecular thermodynamic characterization of LCST fluid phase behavior and exploring electrostatic algorithms to compute polymer/solvent solubility parameters in the canonical ensemble

机译:LCST液相行为的分子热力学表征和探索静电算法以计算规范集合中的聚合物/溶剂溶解度参数

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The present study aims to characterize the temperature dependence of polyethylene (PE) solubility in hexane at high pressure using an atomistic-level simulation technique, without the need for expensive and time-consuming experimental methods, to gain significant miscibility insights in polymer processes that are present in a wide range of industrial applications. To this end, various molecular dynamics (MD) simulations based upon the OPLS-AA force field are carried out over a range of 425-500 K at 50 and 200 bar to predict the temperature dependence of Hildebrand's solubility parameter of high-density polyethylene (HDPE) and hexane at these high pressures. The NVT simulation results compare quite favorably with the available experimental and theoretical data. The effect of electrostatic potential energy contribution to cohesive energy is also investigated, and it is shown that the solubility parameter decreases with increasing temperature for both molecular mechanical models with and without electrostatic terms. Subsequently, the Flory-Huggins (FH) binary interaction parameter is predicted from the knowledge of temperature dependence of solubility parameters. It is demonstrated that the computed binary interaction parameter increases upon increasing the temperature, indicating that the miscibility of the PE/hexane system decreases by raising the temperature. This conclusion is in agreement with the widely recognized lower critical solution temperature (LCST) fluid phase behavior. Moreover, it is shown that the increase in system temperature decreases the chemical potential factor of the phase stability condition, indicating that at higher temperatures this effect tends to destabilize the polymer-solvent system. Comparisons of electrostatic forces evaluated based on shift functions and the Particle-Mesh Ewald (PME) methods show slight difference, and it is also found that the grid spacing has no noticeable influence on non-bonded energy terms and total potential, employed in the calculation of cohesive energy, a result that is useful to increase the efficiency of future MD simulations.
机译:本研究旨在使用原子级模拟技术来表征高压下聚乙烯(PE)在己烷中的溶解度与温度的关系,而无需昂贵且费时的实验方法,从而获得了在聚合物工艺中的重要的可混溶性见解。存在于广泛的工业应用中。为此,基于OPLS-AA力场的各种分子动力学(MD)模拟在50和200 bar的压力下于425-500 K的范围内进行,以预测Hildebrand高密度聚乙烯的溶解度参数的温度依赖性( HDPE)和己烷在这些高压下。 NVT仿真结果与可用的实验和理论数据相比非常令人满意。还研究了静电势能对内聚能的影响,结果表明,对于带有和不带有静电项的分子力学模型,溶解度参数都随温度的升高而降低。随后,根据对溶解度参数的温度依赖性的知识来预测Flory-Huggins(FH)二元相互作用参数。结果表明,所计算的二元相互作用参数随着温度的升高而增加,表明PE /己烷体系的混溶性随温度的升高而降低。该结论与公认的较低临界溶液温度(LCST)流体相行为一致。此外,显示出系统温度的升高降低了相稳定性条件的化学势因子,表明在较高的温度下,该作用趋于使聚合物-溶剂体系不稳定。基于位移函数和粒子网格法Ewald(PME)方法评估的静电力的比较显示出细微差别,并且还发现网格间距对计算中使用的非键能项和总电势没有明显影响凝聚能,这一结果对于提高未来MD仿真的效率很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号