...
首页> 外文期刊>Physics of plasmas >Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D
【24h】

Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D

机译:在DIII-D上发现净零中性束注入扭矩和高能量限制的静态H模式等离子体的平稳运行

获取原文
获取原文并翻译 | 示例
           

摘要

Recent experiments in DIII-D [J. L. Luxon et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H98y2 international tokamak energy confinement scaling (H-98y2 = 1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggered in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers E x B rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the E x B shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transportlimited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant beta(N) = 1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good confinement is key for fusion energy production. (C) 2016 AIP Publishing LLC.
机译:DIII-D的最新实验[J. L.Luxon等人,《等离子体物理和受控核聚变研究》,1996年(国际原子能机构,维也纳,1987年),第1卷。我,第159]导致发现一种改变边缘湍流的方法,以实现稳定的高约束操作,而没有边缘局部模式(ELM)的不稳定性,也没有净外部扭矩输入。消除ELM引起的热脉冲并控制低旋转下的等离子体稳定性是聚变能面临的两个重大挑战。通过以新颖的方式利用边缘湍流,我们获得了出色的托卡马克性能,远高于国际H98y2托卡马克能量限制比例(H-98y2 = 1.25),从而满足了通常在低扭矩下难以克服的其他限制挑战。通过将注入的扭矩增加到零,然后将其保持在零值,在双无效等离子体中触发新的状态。这降低了等离子体边缘的E x B旋转剪切力,从而增加了低k宽带宽带电磁湍流。在H模式边缘,通常会增长一个狭窄的传输屏障,直到MHD不稳定性(剥离膨胀模式)导致ELM热破裂。然而,增加的湍流减小了压力梯度,从而允许形成更宽的因而更高的运输屏障。基座压力增加60%,能量限制增加40%。边缘基座内部的E x B剪切速率的增加是限制增加的关键因素。强双空等离子体整形提高了ELM不稳定性的阈值,从而使等离子体在爆炸性ELM稳定性边界附近但低于爆炸性ELM稳定性边界时达到了传输受限状态。产生的等离子体具有与燃烧等离子体相关的beta(N)= 1.6-1.8,并且运行时不需要3D磁场产生额外的扭矩。迄今为止,已经产生了2 s或12次能量限制时间的固定条件,仅受外部硬件限制。对于未来燃烧的等离子体设备而言,具有改进的基座条件的固定运行非常重要,因为在低旋转和良好密闭条件下没有ELM的运行是产生聚变能量的关键。 (C)2016 AIP出版有限责任公司。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号