首页> 外文期刊>Physics of plasmas >Experimental evidence of edge intrinsic momentum source driven by kinetic ion loss and edge radial electric fields in tokamaks
【24h】

Experimental evidence of edge intrinsic momentum source driven by kinetic ion loss and edge radial electric fields in tokamaks

机译:托卡马克中动离子损失和边缘径向电场驱动边缘固有动量源的实验证据

获取原文
获取原文并翻译 | 示例
       

摘要

Bulk ion toroidal velocity profiles, V-parallel to(D+), peaking at 40-60 km/s are observed with Mach probes in a narrow edge region of DIII-D discharges without external momentum input. This intrinsic rotation can be well reproduced by a first principle, collisionless kinetic loss model of thermal ion loss that predicts the existence of a loss-cone distribution in velocity space resulting in a co-Ip directed velocity. We consider two kinetic models, one of which includes turbulence-enhanced momentum transport, as well as the Pfirsch-Schluter (P-S) fluid mechanism. We measure a fine structure of the boundary radial electric field, E-r, insofar ignored, featuring large (10-20 kV/m) positive peaks in the scrape off layer (SOL) at, or slightly inside, the last closed flux surface of these low power L- and H-mode discharges in DIII-D. The Er structure significantly affects the ion-loss model, extended to account for a non-uniform electric field. We also find that V-parallel to(D+) is reduced when the magnetic topology is changed from lower single null to upper single null. The kinetic ion loss model containing turbulence-enhanced momentum transport can explain the reduction, as we find that the potential fluctuations decay with radius, while we need to invoke a topology-enhanced collisionality on the simpler kinetic model. The P-S mechanism fails to reproduce the damping. We show a clear correlation between the near core V-parallel to(C6+) velocity and the peak edge V-parallel to(D+) in discharges with no external torque, further supporting the hypothesis that ion loss is the source for intrinsic torque in the present tokamaks. However, we also show that when external torque is injected in the core, it can complete with, and eventually overwhelm, the edge source, thus determining the near SOL flows. Finally, we show some additional evidence that the ion/electron distribution in the SOL is non-Maxwellian. Published by AIP Publishing.
机译:在没有外部动量输入的情况下,在DIII-D放电的狭窄边缘区域中用Mach探针观察到了大的离子环面速度分布,V平行于(D +),达到40-60 km / s的峰值。这种内在旋转可以通过热离子损失的第一个原理(无碰撞动力学损失模型)很好地再现,该模型预测速度空间中存在损失圆锥分布,从而导致co-Ip定向速度。我们考虑了两个动力学模型,其中之一包括湍流增强的动量传输,以及Pfirsch-Schluter(P-S)流体机制。我们测量了边界径向电场Er的精细结构,在此范围之内,它被忽略了,在这些结构的最后一个封闭通量表面或略微位于其内部的刮擦层(SOL)中具有大(10-20 kV / m)正峰DIII-D中的低功率L和H模式放电。 Er结构显着影响离子损失模型,并扩展为解决非均匀电场的问题。我们还发现,当磁拓扑结构从低单零变为高单零时,与(D +)的V平行度降低。包含湍流增强动量传输的动力学离子损失模型可以解释这种减少,因为我们发现潜在的波动随半径而衰减,而我们需要在更简单的动力学模型上调用拓扑增强的碰撞性。 P-S机制无法再现阻尼。我们显示了在没有外部扭矩的情况下,近芯V平行于(C6 +)速度与峰边缘V平行于(D +)之间存在明显的相关性,进一步证明了离子损失是离子流中固有扭矩的来源这一假设。目前的托卡马克。但是,我们还表明,当将外部扭矩注入岩心中时,它可以完成并最终淹没边缘源,从而确定接近SOL的流量。最后,我们显示了一些其他证据,表明SOL中的离子/电子分布是非麦克斯韦分布的。由AIP Publishing发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号