首页> 外文期刊>Physics of plasmas >Gyro-fluid and two-fluid theory and simulations of edge-localized-modes
【24h】

Gyro-fluid and two-fluid theory and simulations of edge-localized-modes

机译:陀螺流体和二流体理论及边缘局域模的仿真

获取原文
获取原文并翻译 | 示例
           

摘要

This paper reports on the theoretical and simulation results of a gyro-Landau-fluid extension of the BOUT++ code, which contributes to increasing the physics understanding of edge-localized-modes (ELMs). Large ELMs with low-to-intermediate-n peeling-ballooning (P-B) modes are significantly suppressed due to finite Larmor radius (FLR) effects when the ion temperature increases. For type-I ELMs, it is found from linear simulations that retaining complete first order FLR corrections as resulting from the incomplete "gyroviscous cancellation" in Braginskii's two-fluid model is necessary to obtain good agreement with gyro-fluid results for high ion temperature cases (Ti3 keV) when the ion density has a strong radial variation, which goes beyond the simple local model of ion diamagnetic stabilization of ideal ballooning modes. The maximum growth rate is inversely proportional to T_i because the FLR effect is proportional to T_i. The FLR effect is also proportional to toroidal mode number n, so for high n cases, the P-B mode is stabilized by FLR effects. Nonlinear gyro-fluid simulations show results that are similar to those from the two-fluid model, namely that the P-B modes trigger magnetic reconnection, which drives the collapse of the pedestal pressure. Due to the additional FLR-corrected nonlinear E × B convection of the ion gyro-center density, for a ballooning-dominated equilibrium the gyro-fluid model further limits the radial spreading of ELMs. In six-field two fluid simulations, the parallel thermal diffusivity is found to prevent the ELM encroachment further into core plasmas and therefore leads to steady state L-mode profiles. The simulation results show that most energy is lost via ion channel during an ELM event, followed by particle loss and electron energy loss. Because edge plasmas have significant spatial inhomogeneities and complicated boundary conditions, we have developed a fast non-Fourier method for the computation of Landau-fluid closure terms based on an accurate and tunable approximation. The accuracy and the fast computational scaling of the method have been demonstrated.
机译:本文报告了BOUT ++代码的陀螺-兰道流体扩展的理论和仿真结果,这有助于提高对边缘局部化模式(ELM)的物理理解。当离子温度升高时,由于有限的拉莫尔半径(FLR)效应,具有低到中级n-p-B剥离模式的大型ELM被显着抑制。对于I型ELM,从线性模拟中发现,为了获得与高离子温度情况下的陀螺流体结果良好的一致性,必须保持Braginskii双流体模型中不完全的“陀螺粘性消除”导致的完整的一阶FLR校正。 (Ti3 keV)时,离子密度具有很强的径向变化,这超出了理想膨胀模式的离子抗磁稳定的简单局部模型。最大增长率与T_i成反比,因为FLR效应与T_i成正比。 FLR效果也与环形模式编号n成正比,因此对于高n种情况,P-B模式通过FLR效果得以稳定。非线性陀螺流体仿真显示的结果与双流体模型的结果相似,即P-B模式触发磁重连,从而驱动基座压力崩溃。由于离子陀螺中心密度的额外FLR校正的非线性E×B对流,对于以膨胀为主导的平衡,陀螺流体模型进一步限制了ELM的径向扩展。在六场两流体模拟中,发现平行的热扩散率可防止ELM进一步侵入核心等离子体,因此可导致稳态L型分布。仿真结果表明,在ELM事件中,大多数能量是通过离子通道损失的,其次是颗粒损失和电子能量损失。由于边缘等离子体具有明显的空间不均匀性和复杂的边界条件,因此我们开发了一种快速的非傅立叶方法,用于基于精确且可调的近似值来计算Landau流体封闭项。已经证明了该方法的准确性和快速的计算规模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号