...
首页> 外文期刊>Physical review, E. Statistical physics, plasmas, fluids, and related interdisciplinary topics >Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex. II. Numerical simulations, spectral entropy, and correlation times - art. no. 011918
【24h】

Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex. II. Numerical simulations, spectral entropy, and correlation times - art. no. 011918

机译:迈向全麻诱导的大脑皮层相变的理论。二。数值模拟,谱熵和相关时间-艺术。没有。 011918

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In our two recent papers [M.L. Steyn-Ross et al., Phys. Rev. E 60, 7299 (1999); 64, 011917 (2001)] we presented clinical evidence for a general anesthetic-induced phase change in the cerebral cortex, and showed how the: significant features of the cortical phase change (biphasic power surge, spectral energy redistribution, "heat capacity" divergence), could be explained using a stochastic single-macrocolumn model of the cortex. The model predictions were based on rather strong "adiabatic" assumptions which assert that the mean-field excitatory and inhibitory macrocolumn voltages are "slow" variables whose equilibration times are much longer than those of the input "currents" that drive the macrocolumn. In the present paper we test the adiabatic assumption by running numerical simulations of the stochastic differential equations. These simulations confirm the number and nature of the steady-state solutions, the growth of fluctuation power at transition, and the redistribution of spectral energy towards lower frequencies. We use spectral entropy to quantify these changes in the power spectral density, and to show that the spectral entropy should decrease markedly at the point of transition. This prediction agrees with recent clinical findings by Viertio-Oja and colleagues [J. Clinical Monitoring Computing 16, 60 (2000)]. Our modeling work shows that there is an inverse relationship between spectral entropy H and correlation time T of the soma-voltage fluctuations: H proportional to-(In T). In a theoretical analysis we prove that this proportionality becomes exact for an ideal Lorentzian process. These findings suggest that by monitoring the changes in EEG correlation time, it should be possible to track changes in the state of patient consciousness. [References: 17]
机译:在我们最近的两篇论文中[M.L. Steyn-Ross等,Phys。 E 60,7299(1999); 64,011917(2001)]我们提出了全身麻醉药诱导的大脑皮层相变的临床证据,并显示了以下情况:皮质相变的显着特征(双相功率波动,光谱能量重新分布,“热容”发散),可以使用皮质的随机单宏列模型进行解释。该模型的预测基于相当强的“绝热”假设,这些假设认为平均场激发和抑制宏柱电压是“慢”变量,其平衡时间比驱动宏柱的输入“电流”的平衡时间长得多。在本文中,我们通过运行随机微分方程的数值模拟来测试绝热假设。这些仿真证实了稳态解的数量和性质,过渡时波动功率的增长以及频谱能量向低频的重新分布。我们使用谱熵来量化功率谱密度中的这些变化,并表明谱熵应在过渡点处显着降低。这一预测与Viertio-Oja及其同事的最新临床发现一致[J.临床监测计算16,60(2000)]。我们的建模工作表明,频谱熵H与体电压波动的相关时间T之间存在反比关系:H与-(In T)成正比。在理论分析中,我们证明了这种比例对于理想的洛伦兹过程是精确的。这些发现表明,通过监测脑电图相关时间的变化,应该可以追踪患者意识状态的变化。 [参考:17]

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号